These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 16089718)

  • 1. Relaxation to equilibrium in few-particle adiabatic piston systems.
    Li H; He D; Cao Z; Zhang Y; Munakata T; Hu G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061103. PubMed ID: 16089718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steepest-entropy-ascent quantum thermodynamic modeling of the relaxation process of isolated chemically reactive systems using density of states and the concept of hypoequilibrium state.
    Li G; von Spakovsky MR
    Phys Rev E; 2016 Jan; 93(1):012137. PubMed ID: 26871054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroscopic equations for the adiabatic piston.
    Cencini M; Palatella L; Pigolotti S; Vulpiani A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051103. PubMed ID: 18233619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biased sampling of nonequilibrium trajectories: can fast switching simulations outperform conventional free energy calculation methods?
    Oberhofer H; Dellago C; Geissler PL
    J Phys Chem B; 2005 Apr; 109(14):6902-15. PubMed ID: 16851777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonequilibrium work relations for systems subject to mechanical and thermal changes.
    Chelli R
    J Chem Phys; 2009 Feb; 130(5):054102. PubMed ID: 19206953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized fluctuation-dissipation theorem for steady-state systems.
    Prost J; Joanny JF; Parrondo JM
    Phys Rev Lett; 2009 Aug; 103(9):090601. PubMed ID: 19792774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear thinning and shear dilatancy of liquid n-hexadecane via equilibrium and nonequilibrium molecular dynamics simulations: Temperature, pressure, and density effects.
    Tseng HC; Wu JS; Chang RY
    J Chem Phys; 2008 Jul; 129(1):014502. PubMed ID: 18624478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generalized thermodynamic relations for a system experiencing heat and mass diffusion in the far-from-equilibrium realm based on steepest entropy ascent.
    Li G; von Spakovsky MR
    Phys Rev E; 2016 Sep; 94(3-1):032117. PubMed ID: 27739710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical aspects of an adiabatic piston.
    Munakata T; Ogawa H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036119. PubMed ID: 11580406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonequilibrium fluctuation-dissipation theorem and heat production.
    Lippiello E; Baiesi M; Sarracino A
    Phys Rev Lett; 2014 Apr; 112(14):140602. PubMed ID: 24765939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The covariant dissipation function for transient nonequilibrium states.
    Evans DJ; Searles DJ; Williams SR
    J Chem Phys; 2010 Aug; 133(5):054507. PubMed ID: 20707542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical verification of the generalized Crooks nonequilibrium work theorem for non-Hamiltonian molecular dynamics simulations.
    Chelli R; Marsili S; Barducci A; Procacci P
    J Chem Phys; 2007 Jul; 127(3):034110. PubMed ID: 17655434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear response theory for thermodynamic properties.
    Nielsen JK
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):471-81. PubMed ID: 11969785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of the Jarzynski relation for a system with strong thermal coupling: an isothermal ideal gas model.
    Baule A; Evans RM; Olmsted PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061117. PubMed ID: 17280048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonequilibrium identities and response theory for dissipative particles.
    Hayakawa H; Otsuki M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032117. PubMed ID: 24125223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulation of Particles and Formation of a Dissipative Structure in a Nonequilibrium Bath.
    Yuvan S; Bier M
    Entropy (Basel); 2022 Jan; 24(2):. PubMed ID: 35205484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluctuation-dissipation relation and stationary distribution of an exactly solvable many-particle model for active biomatter far from equilibrium.
    Netz RR
    J Chem Phys; 2018 May; 148(18):185101. PubMed ID: 29764155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhomogeneous multiscale dynamics in harmonic lattices.
    Cubero D; Yaliraki SN
    J Chem Phys; 2005 Jan; 122(3):34108. PubMed ID: 15740193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for nonexponential relaxation and aging in dissipative systems.
    Pérez-Madrid A
    J Chem Phys; 2005 Jun; 122(21):214914. PubMed ID: 15974797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local quasi-equilibrium description of slow relaxation systems.
    Santamaría-Holek I; Pérez-Madrid A; Rubí JM
    J Chem Phys; 2004 Feb; 120(6):2818-23. PubMed ID: 15268428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.