BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1296 related articles for article (PubMed ID: 1608978)

  • 1. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation.
    Kwong KK; Belliveau JW; Chesler DA; Goldberg IE; Weisskoff RM; Poncelet BP; Kennedy DN; Hoppel BE; Cohen MS; Turner R
    Proc Natl Acad Sci U S A; 1992 Jun; 89(12):5675-9. PubMed ID: 1608978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional brain mapping using magnetic resonance imaging. Signal changes accompanying visual stimulation.
    Menon RS; Ogawa S; Kim SG; Ellermann JM; Merkle H; Tank DW; Ugurbil K
    Invest Radiol; 1992 Dec; 27 Suppl 2():S47-53. PubMed ID: 1468875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disparity of activation onset in sensory cortex from simultaneous auditory and visual stimulation: Differences between perfusion and blood oxygenation level-dependent functional magnetic resonance imaging.
    Liu HL; Feng CM; Li J; Su FC; Li N; Glahn D; Gao JH
    J Magn Reson Imaging; 2005 Feb; 21(2):111-7. PubMed ID: 15666409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance imaging mapping of brain function. Human visual cortex.
    Belliveau JW; Kwong KK; Kennedy DN; Baker JR; Stern CE; Benson R; Chesler DA; Weisskoff RM; Cohen MS; Tootell RB
    Invest Radiol; 1992 Dec; 27 Suppl 2(0 2):S59-65. PubMed ID: 1468876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Visualization of brain function using MRI-MR functional brain imaging].
    Watanabe H; Kuwabara T; Ohkubo M; Sakai K; Tsuji S; Yuasa T
    No To Shinkei; 1993 Oct; 45(10):941-4. PubMed ID: 8268034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic MRI sensitized to cerebral blood oxygenation and flow during sustained activation of human visual cortex.
    Krüger G; Kleinschmidt A; Frahm J
    Magn Reson Med; 1996 Jun; 35(6):797-800. PubMed ID: 8744004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging.
    Blamire AM; Ogawa S; Ugurbil K; Rothman D; McCarthy G; Ellermann JM; Hyder F; Rattner Z; Shulman RG
    Proc Natl Acad Sci U S A; 1992 Nov; 89(22):11069-73. PubMed ID: 1438317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomical and functional MR imaging in the macaque monkey using a vertical large-bore 7 Tesla setup.
    Pfeuffer J; Merkle H; Beyerlein M; Steudel T; Logothetis NK
    Magn Reson Imaging; 2004 Dec; 22(10):1343-59. PubMed ID: 15707785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional brain imaging at 1.5 T using conventional gradient echo MR imaging techniques.
    Constable RT; McCarthy G; Allison T; Anderson AW; Gore JC
    Magn Reson Imaging; 1993; 11(4):451-9. PubMed ID: 8316058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MR imaging signal response to sustained stimulation in human visual cortex.
    Hathout GM; Kirlew KA; So GJ; Hamilton DR; Zhang JX; Sinha U; Sinha S; Sayre J; Gozal D; Harper RM
    J Magn Reson Imaging; 1994; 4(4):537-43. PubMed ID: 7949678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional MRI of human brain activation combining high spatial and temporal resolution by a CINE FLASH technique.
    Merboldt KD; Krüger G; Hänicke W; Kleinschmidt A; Frahm J
    Magn Reson Med; 1995 Oct; 34(4):639-44. PubMed ID: 8524035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional MR imaging at 1.5 T. Initial results using photic and motoric stimulation.
    Henriksen O; Larsson HB; Ring P; Rostrup E; Stensgaard A; Stubgaard M; Ståhlberg F; Söndergaard L; Thomsen C; Toft P
    Acta Radiol; 1993 Jan; 34(1):101-3. PubMed ID: 8427742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional magnetic resonance imaging of primary visual processing using a 1.0 Tesla scanner.
    Lundervold A; Ersland L; Gjesdal KI; Smievoll AI; Tillung T; Sundberg H; Hugdahl K
    Int J Neurosci; 1995 Apr; 81(3-4):151-68. PubMed ID: 7628907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous detection of changes in perfusion and BOLD contrast.
    Schwarzbauer C
    NMR Biomed; 2000 Jan; 13(1):37-42. PubMed ID: 10668052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral blood flow, blood volume, and oxygen metabolism dynamics in human visual and motor cortex as measured by whole-brain multi-modal magnetic resonance imaging.
    Donahue MJ; Blicher JU; Østergaard L; Feinberg DA; MacIntosh BJ; Miller KL; Günther M; Jezzard P
    J Cereb Blood Flow Metab; 2009 Nov; 29(11):1856-66. PubMed ID: 19654592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of dual gradient-echo and spin-echo fMRI of the inferior temporal lobe.
    Halai AD; Welbourne SR; Embleton K; Parkes LM
    Hum Brain Mapp; 2014 Aug; 35(8):4118-28. PubMed ID: 24677506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging.
    Ogawa S; Tank DW; Menon R; Ellermann JM; Kim SG; Merkle H; Ugurbil K
    Proc Natl Acad Sci U S A; 1992 Jul; 89(13):5951-5. PubMed ID: 1631079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic MR imaging of human brain oxygenation during rest and photic stimulation.
    Frahm J; Bruhn H; Merboldt KD; Hänicke W
    J Magn Reson Imaging; 1992; 2(5):501-5. PubMed ID: 1392241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood oxygenation level dependent signal time courses during prolonged visual stimulation.
    Howseman AM; Porter DA; Hutton C; Josephs O; Turner R
    Magn Reson Imaging; 1998; 16(1):1-11. PubMed ID: 9436941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional magnetic resonance imaging of the human brain: data acquisition and analysis.
    Turner R; Howseman A; Rees GE; Josephs O; Friston K
    Exp Brain Res; 1998 Nov; 123(1-2):5-12. PubMed ID: 9835386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 65.