These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

500 related articles for article (PubMed ID: 16089901)

  • 1. Generation of solitons by a boxlike pulse in the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions.
    Lashkin VM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066613. PubMed ID: 16089901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions.
    Chen XJ; Lam WK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066604. PubMed ID: 15244761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the generation of solitons and breathers in the modified Korteweg-de Vries equation.
    Clarke S; Grimshaw R; Miller P; Pelinovsky E; Talipova T
    Chaos; 2000 Jun; 10(2):383-392. PubMed ID: 12779394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasicollapse of oblique solitons of the weakly dissipative derivative nonlinear Schrödinger equation.
    Sánchez-Arriaga G; Laveder D; Passot T; Sulem PL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016406. PubMed ID: 20866746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of solitons and breathers in the extended Korteweg-de Vries equation with positive cubic nonlinearity.
    Grimshaw R; Slunyaev A; Pelinovsky E
    Chaos; 2010 Mar; 20(1):013102. PubMed ID: 20370257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perturbation theory for dark solitons: inverse scattering transform approach and radiative effects.
    Lashkin VM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066620. PubMed ID: 15697539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dark and antidark solitons in the modified nonlinear Schrödinger equation accounting for the self-steepening effect.
    Li M; Tian B; Liu WJ; Zhang HQ; Wang P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046606. PubMed ID: 20481852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy.
    Chowdury A; Kedziora DJ; Ankiewicz A; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032928. PubMed ID: 25871193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dark-soliton generation in optical fibers.
    Gredeskul SA; Kivshar YS
    Opt Lett; 1989 Nov; 14(22):1281-3. PubMed ID: 19759659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized dark-bright vector soliton solution to the mixed coupled nonlinear Schrödinger equations.
    Manikandan N; Radhakrishnan R; Aravinthan K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022902. PubMed ID: 25215794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of self-steepening on optical solitons in a continuous wave background.
    Han SH; Park QH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066601. PubMed ID: 21797501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stationary solutions for the 1+1 nonlinear Schrödinger equation modeling attractive Bose-Einstein condensates in small potentials.
    Mallory K; Van Gorder RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013204. PubMed ID: 24580353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of vector dark solitons propagation and tunneling effect in the variable coefficient coupled nonlinear Schrödinger equation.
    Musammil NM; Porsezian K; Subha PA; Nithyanandan K
    Chaos; 2017 Feb; 27(2):023113. PubMed ID: 28249402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct perturbation theory for solitons of the derivative nonlinear Schrödinger equation and the modified nonlinear Schrödinger equation.
    Chen XJ; Yang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066608. PubMed ID: 12188852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initial conditions for dark soliton generation in normal-dispersion fiber lasers.
    Ge YQ; Luo JL; Li L; Jin XX; Tang DY; Shen DY; Zhang SM; Zhao LM
    Appl Opt; 2015 Jan; 54(1):71-5. PubMed ID: 25967008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation.
    Wang L; Zhang JH; Wang ZQ; Liu C; Li M; Qi FH; Guo R
    Phys Rev E; 2016 Jan; 93(1):012214. PubMed ID: 26871080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soliton synchronization in the focusing nonlinear Schrödinger equation.
    Sun YH
    Phys Rev E; 2016 May; 93(5):052222. PubMed ID: 27300895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrete solitons in electromechanical resonators.
    Syafwan M; Susanto H; Cox SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026207. PubMed ID: 20365638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of random soliton-like beams in a nonlinear fractional Schrödinger equation.
    Wang J; Jin Y; Gong X; Yang L; Chen J; Xue P
    Opt Express; 2022 Feb; 30(5):8199-8211. PubMed ID: 35299566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Several localized waves induced by linear interference between a nonlinear plane wave and bright solitons.
    Qin YH; Zhao LC; Yang ZY; Yang WL
    Chaos; 2018 Jan; 28(1):013111. PubMed ID: 29390636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.