These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 16089930)

  • 1. Distinctive features of the biological catch bond in the jump-ramp force regime predicted by the two-pathway model.
    Pereverzev YV; Prezhdo OV; Thomas WE; Sokurenko EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):010903. PubMed ID: 16089930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical aspects of the biological catch bond.
    Prezhdo OV; Pereverzev YV
    Acc Chem Res; 2009 Jun; 42(6):693-703. PubMed ID: 19331389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The two-pathway model for the catch-slip transition in biological adhesion.
    Pereverzev YV; Prezhdo OV; Forero M; Sokurenko EV; Thomas WE
    Biophys J; 2005 Sep; 89(3):1446-54. PubMed ID: 15951391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal laws in the force-induced unraveling of biological bonds.
    Pereverzev YV; Prezhdo OV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011905. PubMed ID: 17358182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomistic simulation combined with analytic theory to study the response of the P-selectin/PSGL-1 complex to an external force.
    Gunnerson KN; Pereverzev YV; Prezhdo OV
    J Phys Chem B; 2009 Feb; 113(7):2090-100. PubMed ID: 19178163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond.
    Evans E; Leung A; Heinrich V; Zhu C
    Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11281-6. PubMed ID: 15277675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic competition between catch and slip bonds in selectins bound to ligands.
    Barsegov V; Thirumalai D
    J Phys Chem B; 2006 Dec; 110(51):26403-12. PubMed ID: 17181300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force modulating dynamic disorder: a physical model of catch-slip bond transitions in receptor-ligand forced dissociation experiments.
    Liu F; Ou-Yang ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051904. PubMed ID: 17279936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of unbinding of cell adhesion molecules: transition from catch to slip bonds.
    Barsegov V; Thirumalai D
    Proc Natl Acad Sci U S A; 2005 Feb; 102(6):1835-9. PubMed ID: 15701706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entropic-elasticity-controlled dissociation and energetic-elasticity-controlled rupture induce catch-to-slip bonds in cell-adhesion molecules.
    Wei Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031910. PubMed ID: 18517425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of catch bonds by rate of force application.
    Sarangapani KK; Qian J; Chen W; Zarnitsyna VI; Mehta P; Yago T; McEver RP; Zhu C
    J Biol Chem; 2011 Sep; 286(37):32749-61. PubMed ID: 21775439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic disorder in receptor-ligand forced dissociation experiments.
    Liu F; Ou-Yang ZC; Iwamoto M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):010901. PubMed ID: 16486112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods.
    Li PT; Collin D; Smith SB; Bustamante C; Tinoco I
    Biophys J; 2006 Jan; 90(1):250-60. PubMed ID: 16214869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical catch-slip bond model for arbitrary forces and loading rates.
    Bullerjahn JT; Kroy K
    Phys Rev E; 2016 Jan; 93(1):012404. PubMed ID: 26871098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular mechanics of P- and L-selectin lectin domains binding to PSGL-1.
    Rinko LJ; Lawrence MB; Guilford WH
    Biophys J; 2004 Jan; 86(1 Pt 1):544-54. PubMed ID: 14695299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of catch bonds involving cell-adhesion molecules.
    Marshall BT; Long M; Piper JW; Yago T; McEver RP; Zhu C
    Nature; 2003 May; 423(6936):190-3. PubMed ID: 12736689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topology of molecular deformations induces triphasic catch bonding in selectin-ligand bonds.
    Barkan CO; Bruinsma RF
    Proc Natl Acad Sci U S A; 2024 Feb; 121(6):e2315866121. PubMed ID: 38294934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catch bonds: physical models and biological functions.
    Zhu C; McEver RP
    Mol Cell Biomech; 2005 Sep; 2(3):91-104. PubMed ID: 16708472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy.
    Fritz J; Katopodis AG; Kolbinger F; Anselmetti D
    Proc Natl Acad Sci U S A; 1998 Oct; 95(21):12283-8. PubMed ID: 9770478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force history dependence of receptor-ligand dissociation.
    Marshall BT; Sarangapani KK; Lou J; McEver RP; Zhu C
    Biophys J; 2005 Feb; 88(2):1458-66. PubMed ID: 15556978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.