These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 16089939)
1. Interpretation of a fractional diffusion equation with nonconserved probability density in terms of experimental systems with trapping or recombination. Bisquert J Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011109. PubMed ID: 16089939 [TBL] [Abstract][Full Text] [Related]
2. Fractional Langevin equation and Riemann-Liouville fractional derivative. Sau Fa K Eur Phys J E Soft Matter; 2007 Oct; 24(2):139-43. PubMed ID: 17955164 [TBL] [Abstract][Full Text] [Related]
3. Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. Magin RL; Abdullah O; Baleanu D; Zhou XJ J Magn Reson; 2008 Feb; 190(2):255-70. PubMed ID: 18065249 [TBL] [Abstract][Full Text] [Related]
4. An effective phase shift diffusion equation method for analysis of PFG normal and fractional diffusions. Lin G J Magn Reson; 2015 Oct; 259():232-40. PubMed ID: 26384777 [TBL] [Abstract][Full Text] [Related]
5. Time-fractional diffusion equation with time dependent diffusion coefficient. Fa KS; Lenzi EK Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011107. PubMed ID: 16089937 [TBL] [Abstract][Full Text] [Related]
6. Survival probability of an immobile target in a sea of evanescent diffusive or subdiffusive traps: a fractional equation approach. Abad E; Yuste SB; Lindenberg K Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061120. PubMed ID: 23367906 [TBL] [Abstract][Full Text] [Related]
7. Front dynamics in reaction-diffusion systems with Levy flights: a fractional diffusion approach. del-Castillo-Negrete D; Carreras BA; Lynch VE Phys Rev Lett; 2003 Jul; 91(1):018302. PubMed ID: 12906582 [TBL] [Abstract][Full Text] [Related]
8. Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Cartea A; del-Castillo-Negrete D Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041105. PubMed ID: 17994934 [TBL] [Abstract][Full Text] [Related]
9. Behavior of fractional diffusion at the origin. Ryabov YE Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):030102. PubMed ID: 14524740 [TBL] [Abstract][Full Text] [Related]
10. Exact solutions to nonlinear nonautonomous space-fractional diffusion equations with absorption. Lenzi EK; Mendes GA; Mendes RS; da Silva LR; Lucena LS Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051109. PubMed ID: 12786136 [TBL] [Abstract][Full Text] [Related]
11. Some existence results on nonlinear fractional differential equations. Baleanu D; Rezapour S; Mohammadi H Philos Trans A Math Phys Eng Sci; 2013 May; 371(1990):20120144. PubMed ID: 23547222 [TBL] [Abstract][Full Text] [Related]
12. Fractional generalization of Liouville equations. Tarasov VE Chaos; 2004 Mar; 14(1):123-7. PubMed ID: 15003052 [TBL] [Abstract][Full Text] [Related]
13. Subdiffusion with particle immobilization process described by a differential equation with Riemann-Liouville-type fractional time derivative. Kosztołowicz T Phys Rev E; 2023 Jul; 108(1-1):014132. PubMed ID: 37583171 [TBL] [Abstract][Full Text] [Related]
15. Persistence in the one-dimensional A+B--> Ø reaction-diffusion model. O'Donoghue SJ; Bray AJ Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041105. PubMed ID: 11690008 [TBL] [Abstract][Full Text] [Related]
16. Operator Lévy motion and multiscaling anomalous diffusion. Meerschaert MM; Benson DA; Baeumer B Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 1):021112. PubMed ID: 11308473 [TBL] [Abstract][Full Text] [Related]
17. Existence of mild solutions for fractional nonautonomous evolution equations of Sobolev type with delay. Gou H; Li B J Inequal Appl; 2017; 2017(1):252. PubMed ID: 29070935 [TBL] [Abstract][Full Text] [Related]
19. Lattice Boltzmann Simulation of Spatial Fractional Convection-Diffusion Equation. Bi X; Wang H Entropy (Basel); 2024 Sep; 26(9):. PubMed ID: 39330101 [TBL] [Abstract][Full Text] [Related]
20. Statistics of the number of zero crossings: from random polynomials to the diffusion equation. Schehr G; Majumdar SN Phys Rev Lett; 2007 Aug; 99(6):060603. PubMed ID: 17930811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]