These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 16090085)

  • 1. Scaling laws for unsteady natural convection cooling of fluid with Prandtl number less than one in a vertical cylinder.
    Lin W; Armfield SW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016306. PubMed ID: 16090085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsteady natural convection on an evenly heated vertical plate for Prandtl number Pr< 1.
    Lin W; Armfield SW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066309. PubMed ID: 16486061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term behavior of cooling fluid in a rectangular container.
    Lin W; Armfield SW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056315. PubMed ID: 15244940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prandtl number scaling of unsteady natural convection boundary layers for Pr>1 fluids under isothermal heating.
    Lin W; Armfield SW; Patterson JC; Lei C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066313. PubMed ID: 19658600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalings for unsteady natural convection boundary layers on an evenly heated plate with time-dependent heating flux.
    Lin W; Armfield SW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063013. PubMed ID: 24483563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unified Prandtl number scaling for start-up and fully developed natural-convection boundary layers for both Pr ≳1 and Pr ≲1 fluids with isothermal heating.
    Lin W; Armfield SW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066312. PubMed ID: 23368043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pr<1 intrusion flow induced by a vertical heated wall.
    Xu F; Patterson JC; Lei C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026318. PubMed ID: 20866916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Momentum and heat transport scalings in laminar vertical convection.
    Shishkina O
    Phys Rev E; 2016 May; 93(5):051102. PubMed ID: 27300823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling in laminar natural convection in laterally heated cavities: is turbulence essential in the classical scaling of heat transfer?
    Yu H; Li N; Ecke RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026303. PubMed ID: 17930138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling of convective boundary layer flow induced by linear thermal forcing at Pr<1 and Pr>1.
    Liu Y
    Phys Rev E; 2019 Oct; 100(4-1):043112. PubMed ID: 31771027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prandtl number dependence of the viscous boundary layer and the Reynolds numbers in Rayleigh-Bénard convection.
    Lam S; Shang XD; Zhou SQ; Xia KQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066306. PubMed ID: 12188827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rayleigh-Bénard convection in a vertical annular container near the convection threshold.
    Wang BF; Wan ZH; Ma DJ; Sun DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043014. PubMed ID: 24827339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weak fountains in a stratified fluid.
    Lin W; Armfield SW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066308. PubMed ID: 12513403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultimate-state scaling in a shell model for homogeneous turbulent convection.
    Ching ES; Ko TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036309. PubMed ID: 18851145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistics of velocity and temperature fluctuations in two-dimensional Rayleigh-Bénard convection.
    Zhang Y; Huang YX; Jiang N; Liu YL; Lu ZM; Qiu X; Zhou Q
    Phys Rev E; 2017 Aug; 96(2-1):023105. PubMed ID: 28950509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the thermal boundary layer for turbulent Rayleigh-Bénard convection of air in a long rectangular enclosure.
    Maystrenko A; Resagk C; Thess A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066303. PubMed ID: 17677353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entropy and energy spectra in low-Prandtl-number convection with rotation.
    Pharasi HK; Kumar K; Bhattacharjee JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023009. PubMed ID: 25353573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy budget in Rayleigh-Bénard convection.
    Kerr RM
    Phys Rev Lett; 2001 Dec; 87(24):244502. PubMed ID: 11736506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prandtl-Number Dependence of Heat Transport in Laminar Horizontal Convection.
    Shishkina O; Wagner S
    Phys Rev Lett; 2016 Jan; 116(2):024302. PubMed ID: 26824542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the angle between the wind and the isothermal surfaces on the boundary layer structures in turbulent thermal convection.
    Shishkina O; Wagner S; Horn S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033014. PubMed ID: 24730944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.