These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 16090104)

  • 1. Causal determination of acoustic group velocity and frequency derivative of attenuation with finite-bandwidth Kramers-Kronig relations.
    Mobley J; Waters KR; Miller JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016604. PubMed ID: 16090104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-bandwidth Kramers-Kronig relations for acoustic group velocity and attenuation derivative applied to encapsulated microbubble suspensions.
    Mobley J
    J Acoust Soc Am; 2007 Apr; 121(4):1916-23. PubMed ID: 17471707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kramers-Kronig relations applied to finite bandwidth data from suspensions of encapsulated microbubbles.
    Mobley J; Waters KR; Hughes MS; Hall CS; Marsh JN; Brandenburger GH; Miller JG
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2091-106. PubMed ID: 11108346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite-bandwidth effects on the causal prediction of ultrasonic attenuation of the power-law form.
    Mobley J; Waters KR; Miller JG
    J Acoust Soc Am; 2003 Nov; 114(5):2782-90. PubMed ID: 14650013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Verification of the Kramers-Kronig relations between ultrasonic attenuation and phase velocity in a finite spectral range for CFRP composites.
    Sokolovskaya YG; Podymova NB; Karabutov AA
    Ultrasonics; 2019 May; 95():37-44. PubMed ID: 30878705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Causality-imposed (Kramers-Kronig) relationships between attenuation and dispersion.
    Waters KR; Mobley J; Miller JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 May; 52(5):822-33. PubMed ID: 16048183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kramers-Kronig analysis of attenuation and dispersion in trabecular bone.
    Waters KR; Hoffmeister BK
    J Acoust Soc Am; 2005 Dec; 118(6):3912-20. PubMed ID: 16419833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is the Kramers-Kronig relationship between ultrasonic attenuation and dispersion maintained in the presence of apparent losses due to phase cancellation?
    Bauer AQ; Marutyan KR; Holland MR; Miller JG
    J Acoust Soc Am; 2007 Jul; 122(1):222-8. PubMed ID: 17614481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential forms of the Kramers-Krönig dispersion relations.
    Waters KR; Hughes MS; Mobley J; Miller JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jan; 50(1):68-76. PubMed ID: 12578137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simplified expressions of the subtracted Kramers-Kronig relations using the expanded forms applied to ultrasonic power-law systems.
    Mobley J
    J Acoust Soc Am; 2010 Jan; 127(1):166-73. PubMed ID: 20058960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unified framework for the numerical evaluation of the Q-subtractive Kramers-Kronig relations and application to the reconstruction of optical constants of quartz.
    Nakov S; Sobakinskaya E; Müh F
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 288():122157. PubMed ID: 36473297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of power-law attenuation coefficient and dispersion spectra in multi-wall carbon nanotube composites using Kramers-Kronig relations.
    Mobley J; Mack RA; Gladden JR; Mantena PR
    J Acoust Soc Am; 2009 Jul; 126(1):92-7. PubMed ID: 19603865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The time-domain signature of negative acoustic group velocity in microsphere suspensions.
    Mobley J
    J Acoust Soc Am; 2007 Jul; 122(1):EL8-14. PubMed ID: 17614373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic properties of a suspension of microspheres supporting negative group velocities.
    Mobley J; Heithaus RE
    Phys Rev Lett; 2007 Sep; 99(12):124301. PubMed ID: 17930506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Velocity dispersion of acoustic waves in cancellous bone.
    Droin P; Berger G; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):581-92. PubMed ID: 18244210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of Phase Jumps in the Measurement of Phase Velocity of Samples Obeying a Frequency Power-Law Attenuation Coefficient Using Kramers-Kronig Relations.
    Elvira L; Tiago MM; Yoza SAN; Kitano C; Higuti RT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jul; 67(7):1438-1447. PubMed ID: 32054577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental verification of the Kramers-Kronig relationship for acoustic waves.
    Lee CC; Lahham M; Martin BG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(4):286-94. PubMed ID: 18285043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Kramers-Kronig-based quality factor for shear wave propagation in soft tissue.
    Urban MW; Greenleaf JF
    Phys Med Biol; 2009 Oct; 54(19):5919-33. PubMed ID: 19759409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractal ladder models and power law wave equations.
    Kelly JF; McGough RJ
    J Acoust Soc Am; 2009 Oct; 126(4):2072-81. PubMed ID: 19813816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Kramers-Kronig relations for usual and anomalous Poisson-Nernst-Planck models.
    Evangelista LR; Lenzi EK; Barbero G
    J Phys Condens Matter; 2013 Nov; 25(46):465104. PubMed ID: 24131984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.