These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 16090129)
1. Continuous extremal optimization for Lennard-Jones clusters. Zhou T; Bai WJ; Cheng LJ; Wang BH Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016702. PubMed ID: 16090129 [TBL] [Abstract][Full Text] [Related]
2. A fast annealing evolutionary algorithm for global optimization. Cai W; Shao X J Comput Chem; 2002 Mar; 23(4):427-35. PubMed ID: 11908078 [TBL] [Abstract][Full Text] [Related]
3. Reference energy extremal optimization: a stochastic search algorithm applied to computational protein design. Zhang N; Zeng C J Comput Chem; 2008 Aug; 29(11):1762-71. PubMed ID: 18351599 [TBL] [Abstract][Full Text] [Related]
4. Global optimization of binary Lennard-Jones clusters using three perturbation operators. Ye T; Xu R; Huang W J Chem Inf Model; 2011 Mar; 51(3):572-7. PubMed ID: 21332209 [TBL] [Abstract][Full Text] [Related]
6. A dynamic lattice searching method for fast optimization of Lennard-Jones clusters. Shao X; Cheng L; Cai W J Comput Chem; 2004 Nov; 25(14):1693-8. PubMed ID: 15362126 [TBL] [Abstract][Full Text] [Related]
7. Unbiased global optimization of Lennard-Jones clusters for N < or =201 using the conformational space annealing method. Lee J; Lee IH; Lee J Phys Rev Lett; 2003 Aug; 91(8):080201. PubMed ID: 14525223 [TBL] [Abstract][Full Text] [Related]
8. A dynamic lattice searching method with constructed core for optimization of large Lennard-Jones clusters. Yang X; Cai W; Shao X J Comput Chem; 2007 Jun; 28(8):1427-33. PubMed ID: 17330880 [TBL] [Abstract][Full Text] [Related]
9. An unbiased population-based search for the geometry optimization of Lennard-Jones clusters: 2 < or = N < or = 372. Pullan W J Comput Chem; 2005 Jul; 26(9):899-906. PubMed ID: 15841476 [TBL] [Abstract][Full Text] [Related]
10. A dynamic lattice searching method with interior operation for unbiased optimization of large Lennard-Jones clusters. Shao X; Yang X; Cai W J Comput Chem; 2008 Aug; 29(11):1772-9. PubMed ID: 18351615 [TBL] [Abstract][Full Text] [Related]
11. Clever and efficient method for searching optimal geometries of lennard-jones clusters. Takeuchi H J Chem Inf Model; 2006; 46(5):2066-70. PubMed ID: 16995737 [TBL] [Abstract][Full Text] [Related]
12. Heuristic-based tabu search algorithm for folding two-dimensional AB off-lattice model proteins. Liu J; Sun Y; Li G; Song B; Huang W Comput Biol Chem; 2013 Dec; 47():142-8. PubMed ID: 24077543 [TBL] [Abstract][Full Text] [Related]
13. Novel method for geometry optimization of molecular clusters: application to benzene clusters. Takeuchi H J Chem Inf Model; 2007; 47(1):104-9. PubMed ID: 17238254 [TBL] [Abstract][Full Text] [Related]
14. Energy landscapes of atomic clusters as black box optimization benchmarks. Müller CL; Sbalzarini IF Evol Comput; 2012; 20(4):543-73. PubMed ID: 22779442 [TBL] [Abstract][Full Text] [Related]
15. Hierarchical global optimization of quasiseparable systems: application to Lennard-Jones clusters. Krivov SV Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):025701. PubMed ID: 12241230 [TBL] [Abstract][Full Text] [Related]
16. Global optimization of Lennard-Jones clusters by a parallel fast annealing evolutionary algorithm. Cai W; Jiang H; Shao X J Chem Inf Comput Sci; 2002; 42(5):1099-103. PubMed ID: 12376996 [TBL] [Abstract][Full Text] [Related]
17. Geometry optimization of atomic clusters using a heuristic method with dynamic lattice searching. Lai X; Huang W; Xu R J Phys Chem A; 2011 May; 115(20):5021-6. PubMed ID: 21526817 [TBL] [Abstract][Full Text] [Related]
18. An adaptive immune optimization algorithm for energy minimization problems. Shao X; Cheng L; Cai W J Chem Phys; 2004 Jun; 120(24):11401-6. PubMed ID: 15268174 [TBL] [Abstract][Full Text] [Related]
19. Revised basin-hopping Monte Carlo algorithm for structure optimization of clusters and nanoparticles. Rondina GG; Da Silva JL J Chem Inf Model; 2013 Sep; 53(9):2282-98. PubMed ID: 23957311 [TBL] [Abstract][Full Text] [Related]
20. Single string based global optimizer for geometry optimization in strongly coupled finite clusters: An adaptive mutation-driven strategy. Sarkar K; Bhattacharyya SP J Chem Phys; 2013 Aug; 139(7):074106. PubMed ID: 23968071 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]