These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 16090133)
1. Domain-decomposition method for parallel lattice Boltzmann simulation of incompressible flow in porous media. Wang J; Zhang X; Bengough AG; Crawford JW Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016706. PubMed ID: 16090133 [TBL] [Abstract][Full Text] [Related]
2. Large-scale grid-enabled lattice Boltzmann simulations of complex fluid flow in porous media and under shear. Harting J; Venturoli M; Coveney PV Philos Trans A Math Phys Eng Sci; 2004 Aug; 362(1821):1703-22. PubMed ID: 15306441 [TBL] [Abstract][Full Text] [Related]
3. Multiple-relaxation-time lattice Boltzmann model for incompressible miscible flow with large viscosity ratio and high Péclet number. Meng X; Guo Z Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043305. PubMed ID: 26565362 [TBL] [Abstract][Full Text] [Related]
4. Unified lattice Boltzmann method for flow in multiscale porous media. Kang Q; Zhang D; Chen S Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056307. PubMed ID: 12513596 [TBL] [Abstract][Full Text] [Related]
5. Generalized lattice Boltzmann model for flow through tight porous media with Klinkenberg's effect. Chen L; Fang W; Kang Q; De'Haven Hyman J; Viswanathan HS; Tao WQ Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033004. PubMed ID: 25871199 [TBL] [Abstract][Full Text] [Related]
6. Finite-volume method with lattice Boltzmann flux scheme for incompressible porous media flow at the representative-elementary-volume scale. Hu Y; Li D; Shu S; Niu X Phys Rev E; 2016 Feb; 93(2):023308. PubMed ID: 26986440 [TBL] [Abstract][Full Text] [Related]
7. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries. Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909 [TBL] [Abstract][Full Text] [Related]
8. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts. Zu YQ; He S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043301. PubMed ID: 23679542 [TBL] [Abstract][Full Text] [Related]
10. SHIFT: an implementation for lattice Boltzmann simulation in low-porosity porous media. Ma J; Wu K; Jiang Z; Couples GD Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056702. PubMed ID: 20866349 [TBL] [Abstract][Full Text] [Related]
11. Lattice Boltzmann model for incompressible flows through porous media. Guo Z; Zhao TS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036304. PubMed ID: 12366250 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of a new solid boundary implementation in the lattice Boltzmann method for porous media considering permeability and apparent slip. Moqtaderi H; Esfahanian V Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2193-201. PubMed ID: 21536565 [TBL] [Abstract][Full Text] [Related]
13. Simulation of fluid flow in a body-fitted grid system using the lattice Boltzmann method. Mirzaei M; Poozesh A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063312. PubMed ID: 23848811 [TBL] [Abstract][Full Text] [Related]
14. Lattice Boltzmann interface capturing method for incompressible flows. Zheng HW; Shu C; Chew YT Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056705. PubMed ID: 16383783 [TBL] [Abstract][Full Text] [Related]
15. Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media. Karani H; Huber C Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023304. PubMed ID: 25768633 [TBL] [Abstract][Full Text] [Related]
16. Lattice Boltzmann Model for Gas Flow through Tight Porous Media with Multiple Mechanisms. Ren J; Zheng Q; Guo P; Zhao C Entropy (Basel); 2019 Feb; 21(2):. PubMed ID: 33266849 [TBL] [Abstract][Full Text] [Related]
17. Lattice Boltzmann simulations of binary fluid flow through porous media. Tölke J; Krafczyk M; Schulz M; Rank E Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):535-45. PubMed ID: 16214693 [TBL] [Abstract][Full Text] [Related]
18. Distribution of multiphase fluids in porous media: comparison between lattice Boltzmann modeling and micro-x-ray tomography. Sukop MC; Huang H; Lin CL; Deo MD; Oh K; Miller JD Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026710. PubMed ID: 18352151 [TBL] [Abstract][Full Text] [Related]
19. Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model. Zhao J; Yao J; Zhang M; Zhang L; Yang Y; Sun H; An S; Li A Sci Rep; 2016 Sep; 6():32393. PubMed ID: 27587293 [TBL] [Abstract][Full Text] [Related]
20. Reconstruction of three-dimensional porous media using a single thin section. Tahmasebi P; Sahimi M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066709. PubMed ID: 23005245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]