These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16090190)

  • 1. Origin and activity of oxidized gold in water-gas-shift catalysis.
    Liu ZP; Jenkins SJ; King DA
    Phys Rev Lett; 2005 May; 94(19):196102. PubMed ID: 16090190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO-free hydrogen production for fuel cell applications over Au/CeO2 catalysts: FTIR insight into the role of dopant.
    Tabakova T; Manzoli M; Vindigni F; Idakiev V; Boccuzzi F
    J Phys Chem A; 2010 Mar; 114(11):3909-15. PubMed ID: 19788199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction mechanisms for the CO oxidation on Au/CeO(2) catalysts: activity of substitutional Au(3+)/Au(+) cations and deactivation of supported Au(+) adatoms.
    Camellone MF; Fabris S
    J Am Chem Soc; 2009 Aug; 131(30):10473-83. PubMed ID: 19722624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ time-resolved characterization of Au-CeO2 and AuOx-CeO2 catalysts during the water-gas shift reaction: presence of Au and O vacancies in the active phase.
    Wang X; Rodriguez JA; Hanson JC; Pérez M; Evans J
    J Chem Phys; 2005 Dec; 123(22):221101. PubMed ID: 16375458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction.
    Rodriguez JA; Ma S; Liu P; Hrbek J; Evans J; Pérez M
    Science; 2007 Dec; 318(5857):1757-60. PubMed ID: 18079397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites.
    Green IX; Tang W; Neurock M; Yates JT
    Acc Chem Res; 2014 Mar; 47(3):805-15. PubMed ID: 24372536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the catalytic activity of Au3, Au4+, Au5, and Au5- in the gas-phase reaction of H2 and O2 to form hydrogen peroxide: a density functional theory investigation.
    Joshi AM; Delgass WN; Thomson KT
    J Phys Chem B; 2005 Dec; 109(47):22392-406. PubMed ID: 16853917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold atoms stabilized on various supports catalyze the water-gas shift reaction.
    Flytzani-Stephanopoulos M
    Acc Chem Res; 2014 Mar; 47(3):783-92. PubMed ID: 24266870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism.
    Burch R
    Phys Chem Chem Phys; 2006 Dec; 8(47):5483-500. PubMed ID: 17136264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DFT and in situ EXAFS investigation of gold/ceria-zirconia low-temperature water gas shift catalysts: identification of the nature of the active form of gold.
    Tibiletti D; Fonseca AA; Burch R; Chen Y; Fisher JM; Goguet A; Hardacre C; Hu P; Thompsett D
    J Phys Chem B; 2005 Dec; 109(47):22553-9. PubMed ID: 16853937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The activation of gold and the water-gas shift reaction: insights from studies with model catalysts.
    Rodriguez JA; Senanayake SD; Stacchiola D; Liu P; Hrbek J
    Acc Chem Res; 2014 Mar; 47(3):773-82. PubMed ID: 24191672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of CO, H2O and H2 coverage by XANES and EXAFS on Pt and Au during water gas shift reaction.
    Guo N; Fingland BR; Williams WD; Kispersky VF; Jelic J; Delgass WN; Ribeiro FH; Meyer RJ; Miller JT
    Phys Chem Chem Phys; 2010 Jun; 12(21):5678-93. PubMed ID: 20442915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria.
    Wang X; Rodriguez JA; Hanson JC; Gamarra D; Martínez-Arias A; Fernández-García M
    J Phys Chem B; 2006 Jan; 110(1):428-34. PubMed ID: 16471552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeO(x)/TiO2(110) catalysts.
    Bruix A; Rodriguez JA; Ramírez PJ; Senanayake SD; Evans J; Park JB; Stacchiola D; Liu P; Hrbek J; Illas F
    J Am Chem Soc; 2012 May; 134(21):8968-74. PubMed ID: 22563752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO Oxidation at the Interface of Au Nanoclusters and the Stepped-CeO2(111) Surface by the Mars-van Krevelen Mechanism.
    Kim HY; Henkelman G
    J Phys Chem Lett; 2013 Jan; 4(1):216-21. PubMed ID: 26291234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Design of Gold-Based Catalysts for H
    Tabakova T
    Front Chem; 2019; 7():517. PubMed ID: 31448254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO adsorption on gold clusters stabilized on ceria-titania mixed oxides: comparison with reference catalysts.
    Vindigni F; Manzoli M; Chiorino A; Tabakova T; Boccuzzi F
    J Phys Chem B; 2006 Nov; 110(46):23329-36. PubMed ID: 17107183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Identification of Active Surface Species for the Water-Gas Shift Reaction on a Gold-Ceria Catalyst.
    Fu XP; Guo LW; Wang WW; Ma C; Jia CJ; Wu K; Si R; Sun LD; Yan CH
    J Am Chem Soc; 2019 Mar; 141(11):4613-4623. PubMed ID: 30807152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metallic corner atoms in gold clusters supported on rutile are the dominant active site during water-gas shift catalysis.
    Williams WD; Shekhar M; Lee WS; Kispersky V; Delgass WN; Ribeiro FH; Kim SM; Stach EA; Miller JT; Allard LF
    J Am Chem Soc; 2010 Oct; 132(40):14018-20. PubMed ID: 20853899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.