These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 16090265)

  • 1. Unified description of charge-carrier mobilities in disordered semiconducting polymers.
    Pasveer WF; Cottaar J; Tanase C; Coehoorn R; Bobbert PA; Blom PW; de Leeuw DM; Michels MA
    Phys Rev Lett; 2005 May; 94(20):206601. PubMed ID: 16090265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge carrier mobility of disordered organic semiconductors with correlated energetic and spatial disorder.
    Kaiser W; Albes T; Gagliardi A
    Phys Chem Chem Phys; 2018 Mar; 20(13):8897-8908. PubMed ID: 29553153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling of the charge carrier mobility in disordered linear polymer materials.
    Toman P; Menšík M; Bartkowiak W; Pfleger J
    Phys Chem Chem Phys; 2017 Mar; 19(11):7760-7771. PubMed ID: 28262858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polaron hopping mediated by nuclear tunnelling in semiconducting polymers at high carrier density.
    Asadi K; Kronemeijer AJ; Cramer T; Koster LJ; Blom PW; de Leeuw DM
    Nat Commun; 2013; 4():1710. PubMed ID: 23591877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes.
    Tanase C; Meijer EJ; Blom PW; De Leeuw DM
    Phys Rev Lett; 2003 Nov; 91(21):216601. PubMed ID: 14683323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical temperature dependence of the charge-carrier mobility in semiconducting polymers.
    Roncaratti LF; Gargano R; Magela e Silva G
    J Phys Chem A; 2009 Dec; 113(52):14591-4. PubMed ID: 19642634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures.
    Saeki A; Koizumi Y; Aida T; Seki S
    Acc Chem Res; 2012 Aug; 45(8):1193-202. PubMed ID: 22676381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carrier Induced Hopping to Band Conduction in Pentacene.
    Rani V; Kumar P; Sharma A; Yadav S; Singh B; Ray N; Ghosh S
    Sci Rep; 2019 Dec; 9(1):20193. PubMed ID: 31882781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory of charge hopping along a disordered polymer chain.
    Fornari RP; Troisi A
    Phys Chem Chem Phys; 2014 Jun; 16(21):9997-10007. PubMed ID: 24481319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A competitive hopping model for carrier transport in disordered organic semiconductors.
    Zhao C; Li C; Duan L
    Phys Chem Chem Phys; 2019 May; 21(19):9905-9911. PubMed ID: 31038510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polaron effects and electric field dependence of the charge carrier mobility in conjugated polymers.
    Jakobsson M; Stafström S
    J Chem Phys; 2011 Oct; 135(13):134902. PubMed ID: 21992338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge transport characteristics of a high-mobility diketopyrrolopyrrole-based polymer.
    Chung DS; Kang I; Kim YH; Kwon SK
    Phys Chem Chem Phys; 2013 Sep; 15(35):14777-82. PubMed ID: 23907664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy position of the transport path in disordered organic semiconductors.
    Oelerich JO; Jansson F; Nenashev AV; Gebhard F; Baranovskii SD
    J Phys Condens Matter; 2014 Jun; 26(25):255801. PubMed ID: 24888582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of short-ranged energetic correlations in the mobility field dependence of disordered organic materials.
    Tonezer C; Freire JA
    J Chem Phys; 2008 Jan; 128(1):014703. PubMed ID: 18190208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of orientations and external electric field on charge carrier mobilities in CuPc and F16CuPc films on highly ordered pyrolytic graphite and octane-1-thiol terminated Au(111) substrates.
    Chen S; Ma J
    Phys Chem Chem Phys; 2010 Oct; 12(38):12177-87. PubMed ID: 20714578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of isomeric structures on transistor performances in naphthodithiophene semiconducting polymers.
    Osaka I; Abe T; Shinamura S; Takimiya K
    J Am Chem Soc; 2011 May; 133(17):6852-60. PubMed ID: 21476552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A unified theory for charge-carrier transport in organic crystals.
    Cheng YC; Silbey RJ
    J Chem Phys; 2008 Mar; 128(11):114713. PubMed ID: 18361607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetic fluctuations in amorphous semiconducting polymers: Impact on charge-carrier mobility.
    Gali SM; D'Avino G; Aurel P; Han G; Yi Y; Papadopoulos TA; Coropceanu V; Brédas JL; Hadziioannou G; Zannoni C; Muccioli L
    J Chem Phys; 2017 Oct; 147(13):134904. PubMed ID: 28987120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. n-Channel semiconductor materials design for organic complementary circuits.
    Usta H; Facchetti A; Marks TJ
    Acc Chem Res; 2011 Jul; 44(7):501-10. PubMed ID: 21615105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene FETs with high and low mobilities have universal temperature-dependent properties.
    Gosling JH; Morozov SV; Vdovin EE; Greenaway MT; Khanin YN; Kudrynskyi Z; Patanè A; Eaves L; Turyanska L; Fromhold TM; Makarovsky O
    Nanotechnology; 2023 Jan; 34(12):. PubMed ID: 36595273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.