These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16090270)

  • 1. Cotunneling-mediated transport through excited states in the Coulomb-blockade regime.
    Schleser R; Ihn T; Ruh E; Ensslin K; Tews M; Pfannkuche D; Driscoll DC; Gossard AC
    Phys Rev Lett; 2005 May; 94(20):206805. PubMed ID: 16090270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron cotunneling in a semiconductor quantum dot.
    De Franceschi S; Sasaki S; Elzerman JM; van der Wiel WG; Tarucha S; Kouwenhoven LP
    Phys Rev Lett; 2001 Jan; 86(5):878-81. PubMed ID: 11177963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent probing of excited quantum dot states in an interferometer.
    Sigrist M; Ihn T; Ensslin K; Reinwald M; Wegscheider W
    Phys Rev Lett; 2007 Jan; 98(3):036805. PubMed ID: 17358712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cotunneling current through a two-level quantum dot coupled to magnetic leads: the role of exchange interaction.
    Sharafutdinov AU; Burmistrov IS
    J Phys Condens Matter; 2012 Apr; 24(15):155301. PubMed ID: 22436594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple cotunneling in large quantum dot arrays.
    Tran TB; Beloborodov IS; Lin XM; Bigioni TP; Vinokur VM; Jaeger HM
    Phys Rev Lett; 2005 Aug; 95(7):076806. PubMed ID: 16196814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent quantum transport through an interacting quantum dot beyond sequential tunneling: second-order quantum rate equations.
    Dong B; Ding GH; Lei XL
    J Phys Condens Matter; 2015 May; 27(20):205303. PubMed ID: 25950191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cotunneling current and shot noise in quantum dots.
    Thielmann A; Hettler MH; König J; Schön G
    Phys Rev Lett; 2005 Sep; 95(14):146806. PubMed ID: 16241685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles investigation of quantum transport through an endohedral N@C60 in the Coulomb blockade regime.
    Yu Z; Chen J; Zhang L; Wang J
    J Phys Condens Matter; 2013 Dec; 25(49):495302. PubMed ID: 24214776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shot-noise detection in a carbon nanotube quantum dot.
    Onac E; Balestro F; Trauzettel B; Lodewijk CF; Kouwenhoven LP
    Phys Rev Lett; 2006 Jan; 96(2):026803. PubMed ID: 16486613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase coherence in the inelastic cotunneling regime.
    Sigrist M; Ihn T; Ensslin K; Loss D; Reinwald M; Wegscheider W
    Phys Rev Lett; 2006 Jan; 96(3):036804. PubMed ID: 16486753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio electron propagators in molecules with strong electron-phonon interaction: II. Electron Green's function.
    Dahnovsky Y
    J Chem Phys; 2007 Jul; 127(1):014104. PubMed ID: 17627334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron cotunneling through doubly occupied quantum dots: effect of spin configuration.
    Lan J; Sheng W
    Nanoscale Res Lett; 2011 Mar; 6(1):251. PubMed ID: 21711763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cotunneling spectroscopy in few-electron quantum dots.
    Zumbühl DM; Marcus CM; Hanson MP; Gossard AC
    Phys Rev Lett; 2004 Dec; 93(25):256801. PubMed ID: 15697924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parametric study for optimal performance of Coulomb-coupled quantum dots.
    Jong KH; Ri SM; Ri CW
    J Phys Condens Matter; 2021 Jul; 33(37):. PubMed ID: 34181584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlated Coulomb Drag in Capacitively Coupled Quantum-Dot Structures.
    Kaasbjerg K; Jauho AP
    Phys Rev Lett; 2016 May; 116(19):196801. PubMed ID: 27232031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pair tunneling resonance in the single-electron transport regime.
    Leijnse M; Wegewijs MR; Hettler MH
    Phys Rev Lett; 2009 Oct; 103(15):156803. PubMed ID: 19905657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pumping of vibrational excitations in the coulomb-blockade regime in a suspended carbon nanotube.
    Hüttel AK; Witkamp B; Leijnse M; Wegewijs MR; van der Zant HS
    Phys Rev Lett; 2009 Jun; 102(22):225501. PubMed ID: 19658876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of Coulomb interactions on nonlinear thermovoltage and thermocurrent in quantum dots.
    Zimbovskaya NA
    J Chem Phys; 2015 Jun; 142(24):244310. PubMed ID: 26133431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of Coulomb interactions on thermoelectric properties of quantum dots.
    Zimbovskaya NA
    J Chem Phys; 2014 Mar; 140(10):104706. PubMed ID: 24628195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Violation of the Wiedemann-Franz law in a single-electron transistor.
    Kubala B; König J; Pekola J
    Phys Rev Lett; 2008 Feb; 100(6):066801. PubMed ID: 18352503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.