These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 16090270)
1. Cotunneling-mediated transport through excited states in the Coulomb-blockade regime. Schleser R; Ihn T; Ruh E; Ensslin K; Tews M; Pfannkuche D; Driscoll DC; Gossard AC Phys Rev Lett; 2005 May; 94(20):206805. PubMed ID: 16090270 [TBL] [Abstract][Full Text] [Related]
2. Electron cotunneling in a semiconductor quantum dot. De Franceschi S; Sasaki S; Elzerman JM; van der Wiel WG; Tarucha S; Kouwenhoven LP Phys Rev Lett; 2001 Jan; 86(5):878-81. PubMed ID: 11177963 [TBL] [Abstract][Full Text] [Related]
3. Coherent probing of excited quantum dot states in an interferometer. Sigrist M; Ihn T; Ensslin K; Reinwald M; Wegscheider W Phys Rev Lett; 2007 Jan; 98(3):036805. PubMed ID: 17358712 [TBL] [Abstract][Full Text] [Related]
4. Cotunneling current through a two-level quantum dot coupled to magnetic leads: the role of exchange interaction. Sharafutdinov AU; Burmistrov IS J Phys Condens Matter; 2012 Apr; 24(15):155301. PubMed ID: 22436594 [TBL] [Abstract][Full Text] [Related]
10. Phase coherence in the inelastic cotunneling regime. Sigrist M; Ihn T; Ensslin K; Loss D; Reinwald M; Wegscheider W Phys Rev Lett; 2006 Jan; 96(3):036804. PubMed ID: 16486753 [TBL] [Abstract][Full Text] [Related]
11. Ab initio electron propagators in molecules with strong electron-phonon interaction: II. Electron Green's function. Dahnovsky Y J Chem Phys; 2007 Jul; 127(1):014104. PubMed ID: 17627334 [TBL] [Abstract][Full Text] [Related]
12. Electron cotunneling through doubly occupied quantum dots: effect of spin configuration. Lan J; Sheng W Nanoscale Res Lett; 2011 Mar; 6(1):251. PubMed ID: 21711763 [TBL] [Abstract][Full Text] [Related]
13. Cotunneling spectroscopy in few-electron quantum dots. Zumbühl DM; Marcus CM; Hanson MP; Gossard AC Phys Rev Lett; 2004 Dec; 93(25):256801. PubMed ID: 15697924 [TBL] [Abstract][Full Text] [Related]
14. Parametric study for optimal performance of Coulomb-coupled quantum dots. Jong KH; Ri SM; Ri CW J Phys Condens Matter; 2021 Jul; 33(37):. PubMed ID: 34181584 [TBL] [Abstract][Full Text] [Related]
16. Pair tunneling resonance in the single-electron transport regime. Leijnse M; Wegewijs MR; Hettler MH Phys Rev Lett; 2009 Oct; 103(15):156803. PubMed ID: 19905657 [TBL] [Abstract][Full Text] [Related]
17. Pumping of vibrational excitations in the coulomb-blockade regime in a suspended carbon nanotube. Hüttel AK; Witkamp B; Leijnse M; Wegewijs MR; van der Zant HS Phys Rev Lett; 2009 Jun; 102(22):225501. PubMed ID: 19658876 [TBL] [Abstract][Full Text] [Related]
18. The effect of Coulomb interactions on nonlinear thermovoltage and thermocurrent in quantum dots. Zimbovskaya NA J Chem Phys; 2015 Jun; 142(24):244310. PubMed ID: 26133431 [TBL] [Abstract][Full Text] [Related]
19. The effect of Coulomb interactions on thermoelectric properties of quantum dots. Zimbovskaya NA J Chem Phys; 2014 Mar; 140(10):104706. PubMed ID: 24628195 [TBL] [Abstract][Full Text] [Related]
20. Violation of the Wiedemann-Franz law in a single-electron transistor. Kubala B; König J; Pekola J Phys Rev Lett; 2008 Feb; 100(6):066801. PubMed ID: 18352503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]