These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 16090350)

  • 41. Hydrophobic hydration from small to large lengthscales: Understanding and manipulating the crossover.
    Rajamani S; Truskett TM; Garde S
    Proc Natl Acad Sci U S A; 2005 Jul; 102(27):9475-80. PubMed ID: 15972804
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Two-structure thermodynamics for the TIP4P/2005 model of water covering supercooled and deeply stretched regions.
    Biddle JW; Singh RS; Sparano EM; Ricci F; González MA; Valeriani C; Abascal JL; Debenedetti PG; Anisimov MA; Caupin F
    J Chem Phys; 2017 Jan; 146(3):034502. PubMed ID: 28109212
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Atomic-scale analysis of the solvation thermodynamics of hydrophobic hydration.
    Durell SR; Wallqvist A
    Biophys J; 1996 Oct; 71(4):1695-706. PubMed ID: 8889147
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Communication: Protein dynamical transition vs. liquid-liquid phase transition in protein hydration water.
    Schirò G; Fomina M; Cupane A
    J Chem Phys; 2013 Sep; 139(12):121102. PubMed ID: 24089711
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Revisiting a many-body model for water based on a single polarizable site: from gas phase clusters to liquid and air/liquid water systems.
    Réal F; Vallet V; Flament JP; Masella M
    J Chem Phys; 2013 Sep; 139(11):114502. PubMed ID: 24070292
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The water supercooled regime as described by four common water models.
    Malaspina DC; Bermúdez di Lorenzo AJ; Pereyra RG; Szleifer I; Carignano MA
    J Chem Phys; 2013 Jul; 139(2):024506. PubMed ID: 23862952
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydrogen bond strength and network structure effects on hydration of non-polar molecules.
    Lynden-Bell RM; Giovambattista N; Debenedetti PG; Head-Gordon T; Rossky PJ
    Phys Chem Chem Phys; 2011 Feb; 13(7):2748-57. PubMed ID: 21152590
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of specific cations and water entropy on the stability of branched DNA motif structures.
    Pascal TA; Goddard WA; Maiti PK; Vaidehi N
    J Phys Chem B; 2012 Oct; 116(40):12159-67. PubMed ID: 22998030
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Water's Thermal Pressure Drives the Temperature Dependence of Hydrophobic Hydration.
    Cerdeiriña CA; Debenedetti PG
    J Phys Chem B; 2018 Apr; 122(13):3620-3625. PubMed ID: 29227672
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A new water anomaly: the temperature dependence of the proton mean kinetic energy.
    Flammini D; Ricci MA; Bruni F
    J Chem Phys; 2009 Jun; 130(23):236101. PubMed ID: 19548768
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Liquid-liquid phase transitions in supercooled water studied by computer simulations of various water models.
    Brovchenko I; Geiger A; Oleinikova A
    J Chem Phys; 2005 Jul; 123(4):044515. PubMed ID: 16095377
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamical transition of water in the grooves of DNA duplex at low temperature.
    Biswal D; Jana B; Pal S; Bagchi B
    J Phys Chem B; 2009 Apr; 113(13):4394-9. PubMed ID: 19267491
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrophobic collapse and cold denaturation in the Jagla model of water.
    Buldyrev SV; Kumar P; Sastry S; Stanley HE; Weiner S
    J Phys Condens Matter; 2010 Jul; 22(28):284109. PubMed ID: 21399281
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Direct characterization of hydrophobic hydration during cold and pressure denaturation.
    Das P; Matysiak S
    J Phys Chem B; 2012 May; 116(18):5342-8. PubMed ID: 22512347
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The thermodynamical response functions and the origin of the anomalous behavior of liquid water.
    Mallamace F; Corsaro C; Mallamace D; Vasic C; Stanley HE
    Faraday Discuss; 2013; 167():95-108. PubMed ID: 24640487
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of temperature on the low-frequency vibrational spectrum and relative structuring of hydration water around a single-stranded DNA.
    Chakraborty K; Bandyopadhyay S
    J Chem Phys; 2015 Jan; 142(1):015101. PubMed ID: 25573583
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Some Aspects of the Liquid Water Thermodynamic Behavior: From The Stable to the Deep Supercooled Regime.
    Mallamace F; Mensitieri G; Mallamace D; Salzano de Luna M; Chen SH
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33019640
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of confinement on the liquid-liquid phase transition of supercooled water.
    Brovchenko I; Oleinikova A
    J Chem Phys; 2007 Jun; 126(21):214701. PubMed ID: 17567207
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The application of the thermodynamic perturbation theory to study the hydrophobic hydration.
    Mohoric T; Urbic T; Hribar-Lee B
    J Chem Phys; 2013 Jul; 139(2):024101. PubMed ID: 23862923
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular origin of the negative heat capacity of hydrophilic hydration.
    Kinoshita M; Yoshidome T
    J Chem Phys; 2009 Apr; 130(14):144705. PubMed ID: 19368463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.