These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 16090437)

  • 1. Modified spontaneous emission and qubit entanglement from dipole-coupled quantum dots in a photonic crystal nanocavity.
    Hughes S
    Phys Rev Lett; 2005 Jun; 94(22):227402. PubMed ID: 16090437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum emission dynamics from a single quantum dot in a planar photonic crystal nanocavity.
    Hughes S
    Opt Lett; 2005 Jun; 30(11):1393-5. PubMed ID: 15981544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity.
    Yoshie T; Scherer A; Hendrickson J; Khitrova G; Gibbs HM; Rupper G; Ell C; Shchekin OB; Deppe DG
    Nature; 2004 Nov; 432(7014):200-3. PubMed ID: 15538363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling photon absorption in photonic nanowires via dipole-dipole interaction.
    Singh MR
    Opt Lett; 2009 Oct; 34(19):2909-11. PubMed ID: 19794764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macroscopic entanglement and violation of Bell's inequalities between two spatially separated quantum dots in a planar photonic crystal system.
    Yao P; Hughes S
    Opt Express; 2009 Jul; 17(14):11505-14. PubMed ID: 19582066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity.
    Li JJ; Zhu KD
    Nanotechnology; 2011 Feb; 22(5):055202. PubMed ID: 21178232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals.
    Lodahl P; Floris Van Driel A; Nikolaev IS; Irman A; Overgaag K; Vanmaekelbergh D; Vos WL
    Nature; 2004 Aug; 430(7000):654-7. PubMed ID: 15295594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities.
    Chang WH; Chen WY; Chang HS; Hsieh TP; Chyi JI; Hsu TM
    Phys Rev Lett; 2006 Mar; 96(11):117401. PubMed ID: 16605868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical control of excitons in a pair of quantum dots coupled by the dipole-dipole interaction.
    Unold T; Mueller K; Lienau C; Elsaesser T; Wieck AD
    Phys Rev Lett; 2005 Apr; 94(13):137404. PubMed ID: 15904035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Third emission mechanism in solid-state nanocavity quantum electrodynamics.
    Yamaguchi M; Asano T; Noda S
    Rep Prog Phys; 2012 Sep; 75(9):096401. PubMed ID: 22885777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vacuum Rabi spectra of a single quantum emitter.
    Ota Y; Ohta R; Kumagai N; Iwamoto S; Arakawa Y
    Phys Rev Lett; 2015 Apr; 114(14):143603. PubMed ID: 25910123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing electric and magnetic vacuum fluctuations with quantum dots.
    Tighineanu P; Andersen ML; Sørensen AS; Stobbe S; Lodahl P
    Phys Rev Lett; 2014 Jul; 113(4):043601. PubMed ID: 25105618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems.
    Hughes S; Agarwal GS
    Phys Rev Lett; 2017 Feb; 118(6):063601. PubMed ID: 28234504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistent quantum beats and long-distance entanglement from waveguide-mediated interactions.
    Zheng H; Baranger HU
    Phys Rev Lett; 2013 Mar; 110(11):113601. PubMed ID: 25166530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.
    Hoang TB; Akselrod GM; Mikkelsen MH
    Nano Lett; 2016 Jan; 16(1):270-5. PubMed ID: 26606001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel.
    Pelc JS; Yu L; De Greve K; McMahon PL; Natarajan CM; Esfandyarpour V; Maier S; Schneider C; Kamp M; Höfling S; Hadfield RH; Forchel A; Yamamoto Y; Fejer MM
    Opt Express; 2012 Dec; 20(25):27510-9. PubMed ID: 23262701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide.
    Arcari M; Söllner I; Javadi A; Lindskov Hansen S; Mahmoodian S; Liu J; Thyrrestrup H; Lee EH; Song JD; Stobbe S; Lodahl P
    Phys Rev Lett; 2014 Aug; 113(9):093603. PubMed ID: 25215983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous two-photon emission from a single quantum dot.
    Ota Y; Iwamoto S; Kumagai N; Arakawa Y
    Phys Rev Lett; 2011 Dec; 107(23):233602. PubMed ID: 22182088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.