These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 16090655)

  • 21. Solution-phase extraction of ultrathin inner shells from double-wall carbon nanotubes.
    Miyata Y; Suzuki M; Fujihara M; Asada Y; Kitaura R; Shinohara H
    ACS Nano; 2010 Oct; 4(10):5807-12. PubMed ID: 20828183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of intertube interactions in double- and triple-walled carbon nanotubes.
    Hirschmann TCh; Araujo PT; Muramatsu H; Rodriguez-Nieva JF; Seifert M; Nielsch K; Kim YA; Dresselhaus MS
    ACS Nano; 2014 Feb; 8(2):1330-41. PubMed ID: 24456167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface-enhanced Raman scattering on single-wall carbon nanotubes.
    Kneipp K; Kneipp H; Dresselhaus MS; Lefrant S
    Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2361-73. PubMed ID: 15482983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of acetone with single wall carbon nanotubes at cryogenic temperatures: a combined temperature programmed desorption and theoretical study.
    Kazachkin D; Nishimura Y; Irle S; Morokuma K; Vidic RD; Borguet E
    Langmuir; 2008 Aug; 24(15):7848-56. PubMed ID: 18613702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measuring the Density of States of the Inner and Outer Wall of Double-Walled Carbon Nanotubes.
    Chambers BA; Shearer CJ; Yu L; Gibson CT; Andersson GG
    Nanomaterials (Basel); 2018 Jun; 8(6):. PubMed ID: 29921819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter.
    Bifano MF; Kaul PB; Prakash V
    Nanotechnology; 2010 Jun; 21(23):235704. PubMed ID: 20472943
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 13C NMR chemical shift of single-wall carbon nanotubes.
    Latil S; Henrard L; Goze Bac C; Bernier P; Rubio A
    Phys Rev Lett; 2001 Apr; 86(14):3160-3. PubMed ID: 11290132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing charge transfer between shells of double-walled carbon nanotubes sorted by outer-wall electronic type.
    Kalbac M; Green AA; Hersam MC; Kavan L
    Chemistry; 2011 Aug; 17(35):9806-15. PubMed ID: 21774002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electronic properties of propylamine-functionalized single-walled carbon nanotubes.
    Müller M; Meinke R; Maultzsch J; Syrgiannis Z; Hauke F; Pekker A; Kamarás K; Hirsch A; Thomsen C
    Chemphyschem; 2010 Aug; 11(11):2444-8. PubMed ID: 20589825
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sorting of Double-Walled Carbon Nanotubes According to Their Outer Wall Electronic Type via a Gel Permeation Method.
    Moore KE; Pfohl M; Tune DD; Hennrich F; Dehm S; Chakradhanula VS; Kübel C; Krupke R; Flavel BS
    ACS Nano; 2015 Apr; 9(4):3849-57. PubMed ID: 25758564
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemically reactive species remain alive inside carbon nanotubes: a density functional theory study.
    Yumura T
    Phys Chem Chem Phys; 2011 Jan; 13(1):337-46. PubMed ID: 21031224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dielectric Screening inside Carbon Nanotubes.
    Gordeev G; Wasserroth S; Li H; Jorio A; Flavel BS; Reich S
    Nano Lett; 2024 Jul; 24(26):8030-8037. PubMed ID: 38912680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes.
    Milnera M; Kurti J; Hulman M; Kuzmany H
    Phys Rev Lett; 2000 Feb; 84(6):1324-7. PubMed ID: 11017509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical study of the 13C NMR spectroscopy of single-walled carbon nanotubes.
    Besley NA; Titman JJ; Wright MD
    J Am Chem Soc; 2005 Dec; 127(50):17948-53. PubMed ID: 16351126
    [TBL] [Abstract][Full Text] [Related]  

  • 35. When double-wall carbon nanotubes can become metallic or semiconducting.
    Moradian R; Azadi S; Refii-Tabar H
    J Phys Condens Matter; 2007 Apr; 19(17):176209. PubMed ID: 21690955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-energy phonon branches of an individual metallic carbon nanotube.
    Maultzsch J; Reich S; Schlecht U; Thomsen C
    Phys Rev Lett; 2003 Aug; 91(8):087402. PubMed ID: 14525277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preferential synthesis and isolation of (6,5) single-wall nanotubes from one-dimensional C₆₀ coalescence.
    Zhang J; Miyata Y; Kitaura R; Shinohara H
    Nanoscale; 2011 Oct; 3(10):4190-4. PubMed ID: 21879119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective etching of thin single-walled carbon nanotubes.
    Kalbác M; Kavan L; Dunsch L
    J Am Chem Soc; 2009 Apr; 131(12):4529-34. PubMed ID: 19317509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-built tensile strain in large single-walled carbon nanotubes.
    Gao P; Zheng L; Zhang Q; Yuan S; You Y; Shen Z; He D
    ACS Nano; 2010 Feb; 4(2):992-8. PubMed ID: 20078093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Origin of the Giant Enhanced Raman Scattering by Sulfur Chains Encapsulated inside Single-Wall Carbon Nanotubes.
    Nascimento VV; Neves WQ; Alencar RS; Li G; Fu C; Haddon RC; Bekyarova E; Guo J; Alexandre SS; Nunes RW; Souza Filho AG; Fantini C
    ACS Nano; 2021 May; 15(5):8574-8582. PubMed ID: 33900719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.