These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 16090708)

  • 1. Sample-specific and ensemble-averaged magnetoconductance of individual single-wall carbon nanotubes.
    Man HT; Morpurgo AF
    Phys Rev Lett; 2005 Jul; 95(2):026801. PubMed ID: 16090708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetoconductance of carbon nanotube p-n junctions.
    Andreev AV
    Phys Rev Lett; 2007 Dec; 99(24):247204. PubMed ID: 18233479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of band structure on quantum interference in multiwall carbon nanotubes.
    Stojetz B; Miko C; Forró L; Strunk C
    Phys Rev Lett; 2005 May; 94(18):186802. PubMed ID: 15904392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Networks of semiconducting SWNTs: contribution of midgap electronic states to the electrical transport.
    Itkis ME; Pekker A; Tian X; Bekyarova E; Haddon RC
    Acc Chem Res; 2015 Aug; 48(8):2270-9. PubMed ID: 26244611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical detection of individual magnetic nanoparticles encapsulated in carbon nanotubes.
    Cleuziou JP; Wernsdorfer W; Ondarçuhu T; Monthioux M
    ACS Nano; 2011 Mar; 5(3):2348-55. PubMed ID: 21344889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal conductance fluctuations and phase-coherent transport in a semiconductor Bi
    Meng M; Huang S; Tan C; Wu J; Li X; Peng H; Xu HQ
    Nanoscale; 2019 Jun; 11(22):10622-10628. PubMed ID: 31139797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic phase coherence in InAs nanowires.
    Blömers Ch; Lepsa MI; Luysberg M; Grützmacher D; Lüth H; Schäpers T
    Nano Lett; 2011 Sep; 11(9):3550-6. PubMed ID: 21848307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of magnetic field on Mott's variable-range hopping parameters in multiwall carbon nanotube mat.
    Arya VP; Prasad V; Kumar PS
    J Phys Condens Matter; 2012 Jun; 24(24):245602. PubMed ID: 22627115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of nanoscale magnetic activity using a single carbon nanotube.
    Soldano C; Kar S; Talapatra S; Nayak S; Ajayan PM
    Nano Lett; 2008 Dec; 8(12):4498-505. PubMed ID: 19367805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping.
    Samanta SK; Fritsch M; Scherf U; Gomulya W; Bisri SZ; Loi MA
    Acc Chem Res; 2014 Aug; 47(8):2446-56. PubMed ID: 25025887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum oscillations and ferromagnetic hysteresis observed in iron filled multiwall carbon nanotubes.
    Barzola-Quiquia J; Klingner N; Krüger J; Molle A; Esquinazi P; Leonhardt A; Martínez MT
    Nanotechnology; 2012 Jan; 23(1):015707. PubMed ID: 22155967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gate-Controlled Quantum Interference Effects in a Clean Single-Wall Carbon Nanotube p-n Junction.
    Deng X; Gong K; Wang Y; Liu Z; Jiang K; Kang N; Zhang Z
    Phys Rev Lett; 2023 May; 130(20):207002. PubMed ID: 37267546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universality of the Kondo effect in quantum dots with ferromagnetic leads.
    Gaass M; Hüttel AK; Kang K; Weymann I; von Delft J; Strunk Ch
    Phys Rev Lett; 2011 Oct; 107(17):176808. PubMed ID: 22107560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angle-dependent magnetotransport in GaAs/InAs core/shell nanowires.
    Haas F; Wenz T; Zellekens P; Demarina N; Rieger T; Lepsa M; Grützmacher D; Lüth H; Schäpers T
    Sci Rep; 2016 Apr; 6():24573. PubMed ID: 27091000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of thermoelectric power of individual carbon nanotubes.
    Small JP; Perez KM; Kim P
    Phys Rev Lett; 2003 Dec; 91(25):256801. PubMed ID: 14754135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetoresistance of carbon nanotubes: from molecular to mesoscopic fingerprints.
    Roche S; Saito R
    Phys Rev Lett; 2001 Dec; 87(24):246803. PubMed ID: 11736529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain-induced suppression of weak localization in CVD-grown graphene.
    Miao X; Tongay S; Hebard AF
    J Phys Condens Matter; 2012 Nov; 24(47):475304. PubMed ID: 23123808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic devices based on purified carbon nanotubes grown by high-pressure decomposition of carbon monoxide.
    Johnston DE; Islam MF; Yodh AG; Johnson AT
    Nat Mater; 2005 Aug; 4(8):589-92. PubMed ID: 16030521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of field-effect mobility and contact resistance of transistors that use solution-processed single-walled carbon nanotubes.
    Cao Q; Han SJ; Tulevski GS; Franklin AD; Haensch W
    ACS Nano; 2012 Jul; 6(7):6471-7. PubMed ID: 22671996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.