These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 16090745)
1. Shock wave interaction with laser-generated single bubbles. Sankin GN; Simmons WN; Zhu SL; Zhong P Phys Rev Lett; 2005 Jul; 95(3):034501. PubMed ID: 16090745 [TBL] [Abstract][Full Text] [Related]
2. Transient oscillation of cavitation bubbles near stone surface during electrohydraulic lithotripsy. Zhong P; Tong HL; Cocks FH; Preminger GM J Endourol; 1997 Feb; 11(1):55-61. PubMed ID: 9048300 [TBL] [Abstract][Full Text] [Related]
3. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water. Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993 [TBL] [Abstract][Full Text] [Related]
4. Bubble proliferation in the cavitation field of a shock wave lithotripter. Pishchalnikov YA; Williams JC; McAteer JA J Acoust Soc Am; 2011 Aug; 130(2):EL87-93. PubMed ID: 21877776 [TBL] [Abstract][Full Text] [Related]
5. Interaction between shock wave and single inertial bubbles near an elastic boundary. Sankin GN; Zhong P Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046304. PubMed ID: 17155170 [TBL] [Abstract][Full Text] [Related]
13. Detachment and sonoporation of adherent HeLa-cells by shock wave-induced cavitation. Ohl CD; Wolfrum B Biochim Biophys Acta; 2003 Dec; 1624(1-3):131-8. PubMed ID: 14642823 [TBL] [Abstract][Full Text] [Related]
14. Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy. Zhong P; Cocks FH; Cioanta I; Preminger GM J Urol; 1997 Dec; 158(6):2323-8. PubMed ID: 9366384 [TBL] [Abstract][Full Text] [Related]
15. Interaction of lithotripter shockwaves with single inertial cavitation bubbles. Klaseboer E; Fong SW; Turangan CK; Khoo BC; Szeri AJ; Calvisi ML; Sankin GN; Zhong P J Fluid Mech; 2007; 593():33-56. PubMed ID: 19018296 [TBL] [Abstract][Full Text] [Related]
16. Interferometric Fiber Optic Probe for Measurements of Cavitation Bubble Expansion Velocity and Bubble Oscillation Time. Zubalic E; Vella D; Babnik A; Jezeršek M Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679570 [TBL] [Abstract][Full Text] [Related]
17. Improvement of stone fragmentation during shock-wave lithotripsy using a combined EH/PEAA shock-wave generator-in vitro experiments. Xi X; Zhong P Ultrasound Med Biol; 2000 Mar; 26(3):457-67. PubMed ID: 10773377 [TBL] [Abstract][Full Text] [Related]
18. The final stage of the collapse of a cloud of bubbles close to a rigid boundary. Brujan EA; Ikeda T; Yoshinaka K; Matsumoto Y Ultrason Sonochem; 2011 Jan; 18(1):59-64. PubMed ID: 20673738 [TBL] [Abstract][Full Text] [Related]
19. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound. Brujan EA; Ikeda T; Matsumoto Y Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873 [TBL] [Abstract][Full Text] [Related]
20. The generation of negative pressure waves for cavitation studies. Carnell MT; Gentry TP; Emmony DC Ultrasonics; 1998 Feb; 36(1-5):689-93. PubMed ID: 9651598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]