These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 16090745)
21. Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method. Kobayashi K; Kodama T; Takahira H Phys Med Biol; 2011 Oct; 56(19):6421-40. PubMed ID: 21918295 [TBL] [Abstract][Full Text] [Related]
22. Lithotripter shock wave interaction with a bubble near various biomaterials. Ohl SW; Klaseboer E; Szeri AJ; Khoo BC Phys Med Biol; 2016 Oct; 61(19):7031-7053. PubMed ID: 27649337 [TBL] [Abstract][Full Text] [Related]
23. Importance of the implosion of ESWL-induced cavitation bubbles. Delacrétaz G; Rink K; Pittomvils G; Lafaut JP; Vandeursen H; Boving R Ultrasound Med Biol; 1995; 21(1):97-103. PubMed ID: 7754583 [TBL] [Abstract][Full Text] [Related]
24. Deconvolution of acoustically detected bubble-collapse shock waves. Johansen K; Song JH; Johnston K; Prentice P Ultrasonics; 2017 Jan; 73():144-153. PubMed ID: 27657479 [TBL] [Abstract][Full Text] [Related]
25. Effect of pulse duration on bubble formation and laser-induced pressure waves during holmium laser ablation. Jansen ED; Asshauer T; Frenz M; Motamedi M; Delacrétaz G; Welch AJ Lasers Surg Med; 1996; 18(3):278-93. PubMed ID: 8778524 [TBL] [Abstract][Full Text] [Related]
26. Control of cavitation activity by different shockwave pulsing regimes. Huber P; Debus J; Jöchle K; Simiantonakis I; Jenne J; Rastert R; Spoo J; Lorenz WJ; Wannenmacher M Phys Med Biol; 1999 Jun; 44(6):1427-37. PubMed ID: 10498515 [TBL] [Abstract][Full Text] [Related]
27. Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter. Huber P; Jöchle K; Debus J Phys Med Biol; 1998 Oct; 43(10):3113-28. PubMed ID: 9814538 [TBL] [Abstract][Full Text] [Related]
28. Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode. Zhu S; Dreyer T; Liebler M; Riedlinger R; Preminger GM; Zhong P Ultrasound Med Biol; 2004 May; 30(5):675-82. PubMed ID: 15183234 [TBL] [Abstract][Full Text] [Related]
29. [Cavitation bubble dynamics and shock wave generation in eye surgery using the pulsed neodymium:YAG laser]. Vogel A; Hentschel W; Holzfuss J; Lauterborn W Klin Monbl Augenheilkd; 1986 Oct; 189(4):308-16. PubMed ID: 3807223 [TBL] [Abstract][Full Text] [Related]
30. Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field. Sokolov DL; Bailey MR; Crum LA J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1685-95. PubMed ID: 11572377 [TBL] [Abstract][Full Text] [Related]
31. Shock wave-inertial microbubble interaction: methodology, physical characterization, and bioeffect study. Zhong P; Lin H; Xi X; Zhu S; Bhogte ES J Acoust Soc Am; 1999 Mar; 105(3):1997-2009. PubMed ID: 10089617 [TBL] [Abstract][Full Text] [Related]
32. Multiphase fluid-solid coupled analysis of shock-bubble-stone interaction in shockwave lithotripsy. Wang KG Int J Numer Method Biomed Eng; 2017 Oct; 33(10):. PubMed ID: 27885825 [TBL] [Abstract][Full Text] [Related]
33. Shock wave emission and cavitation bubble dynamics by femtosecond optical breakdown in polymer solutions. Brujan EA Ultrason Sonochem; 2019 Nov; 58():104694. PubMed ID: 31450304 [TBL] [Abstract][Full Text] [Related]
34. Focusing of shock waves induced by optical breakdown in water. Sankin GN; Zhou Y; Zhong P J Acoust Soc Am; 2008 Jun; 123(6):4071-81. PubMed ID: 18537359 [TBL] [Abstract][Full Text] [Related]
36. Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound. Wang JC; Zhou Y Ultrasonics; 2015 Jan; 55():65-74. PubMed ID: 25173067 [TBL] [Abstract][Full Text] [Related]
37. Fragmentation process of current laser lithotriptors. Rink K; Delacrétaz G; Salathé RP Lasers Surg Med; 1995; 16(2):134-46. PubMed ID: 7769958 [TBL] [Abstract][Full Text] [Related]
38. Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL. Zhong P; Zhou Y; Zhu S Ultrasound Med Biol; 2001 Jan; 27(1):119-34. PubMed ID: 11295278 [TBL] [Abstract][Full Text] [Related]
39. Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles. Kreider W; Crum LA; Bailey MR; Sapozhnikov OA J Acoust Soc Am; 2011 Nov; 130(5):3531-40. PubMed ID: 22088027 [TBL] [Abstract][Full Text] [Related]
40. A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter. Church CC J Acoust Soc Am; 1989 Jul; 86(1):215-27. PubMed ID: 2754108 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]