These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 16090746)

  • 1. High-frequency driven capillary flows speed up the gas-liquid phase transition in zero-gravity conditions.
    Beysens D; Chatain D; Evesque P; Garrabos Y
    Phys Rev Lett; 2005 Jul; 95(3):034502. PubMed ID: 16090746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frozen-wave instability in near-critical hydrogen subjected to horizontal vibration under various gravity fields.
    Gandikota G; Chatain D; Amiroudine S; Lyubimova T; Beysens D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012309. PubMed ID: 24580229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermovibrational instability in supercritical fluids under weightlessness.
    Amiroudine S; Beysens D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036325. PubMed ID: 18851161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Faraday instability in a near-critical fluid under weightlessness.
    Gandikota G; Chatain D; Amiroudine S; Lyubimova T; Beysens D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013022. PubMed ID: 24580335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Criticality in the slowed-down boiling crisis at zero gravity.
    Charignon T; Lloveras P; Chatain D; Truskinovsky L; Vives E; Beysens D; Nikolayev VS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053007. PubMed ID: 26066249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possibility of long-distance heat transport in weightlessness using supercritical fluids.
    Beysens D; Chatain D; Nikolayev VS; Ouazzani J; Garrabos Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061126. PubMed ID: 21230663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic compensation of gravity forces in (p-) hydrogen near its critical point: application to weightless conditions.
    Wunenburger R; Chatain D; Garrabos Y; Beysens D
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):469-76. PubMed ID: 11088482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoconvectional phenomena induced by vibrations in supercritical SF6 under weightlessness.
    Garrabos Y; Beysens D; Lecoutre C; Dejoan A; Polezhaev V; Emelianov V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056317. PubMed ID: 17677174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsteady near-critical flows in microgravity.
    Polezhaev VI; Gorbunov AA; Soboleva EB
    Ann N Y Acad Sci; 2004 Nov; 1027():286-302. PubMed ID: 15644362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Band instability in near-critical fluids subjected to vibration under weightlessness.
    Lyubimova T; Ivantsov A; Garrabos Y; Lecoutre C; Gandikota G; Beysens D
    Phys Rev E; 2017 Jan; 95(1-1):013105. PubMed ID: 28208391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid/liquid displacement in a vibrating capillary.
    Vorobev A; Prokopev S; Lyubimova T
    Philos Trans A Math Phys Eng Sci; 2023 Apr; 381(2245):20220090. PubMed ID: 36842979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Granular avalanches down inclined and vibrated planes.
    Gaudel N; Kiesgen de Richter S; Louvet N; Jenny M; Skali-Lami S
    Phys Rev E; 2016 Sep; 94(3-1):032904. PubMed ID: 27739816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MR measurement of critical phase transition dynamics and supercritical fluid dynamics in capillary and porous media flow.
    Rassi EM; Codd SL; Seymour JD
    J Magn Reson; 2012 Jan; 214(1):309-14. PubMed ID: 22018694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscous flow of a volatile liquid on an inclined heated surface.
    Ajaev VS
    J Colloid Interface Sci; 2004 Dec; 280(1):165-73. PubMed ID: 15476787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of conditions at start-up on thermovibrational convective flow.
    Melnikov DE; Shevtsova VM; Legros JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056306. PubMed ID: 19113215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical slowing down near the multiferroic phase transition in MnWO4.
    Niermann D; Grams CP; Becker P; Bohatý L; Schenck H; Hemberger J
    Phys Rev Lett; 2015 Jan; 114(3):037204. PubMed ID: 25659020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of modulated-gravity-induced thermal convection in magnetic fields.
    Li BQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 1):041508. PubMed ID: 11308849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adiabatic heating and convection in a porous medium filled with a near-critical fluid.
    Soboleva EB
    Ann N Y Acad Sci; 2009 Apr; 1161():117-34. PubMed ID: 19426311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase diagrams of classical spin fluids: the influence of an external magnetic field on the liquid-gas transition.
    Fenz W; Folk R; Mryglod IM; Omelyan IP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061510. PubMed ID: 14754215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microgravity decreases and hypergravity increases exhaled nitric oxide.
    Karlsson LL; Kerckx Y; Gustafsson LE; Hemmingsson TE; Linnarsson D
    J Appl Physiol (1985); 2009 Nov; 107(5):1431-7. PubMed ID: 19745185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.