These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16090759)

  • 1. Strong coupling in a microcavity LED.
    Tischler JR; Bradley MS; Bulović V; Song JH; Nurmikko A
    Phys Rev Lett; 2005 Jul; 95(3):036401. PubMed ID: 16090759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adjustable exciton-photon coupling with giant Rabi-splitting using layer-by-layer J-aggregate thin films in all-metal mirror microcavities.
    Wei HS; Jaing CC; Chen YT; Lin CC; Cheng CW; Chan CH; Lee CC; Chang JF
    Opt Express; 2013 Sep; 21(18):21365-73. PubMed ID: 24104011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity.
    Heo J; Jahangir S; Xiao B; Bhattacharya P
    Nano Lett; 2013 Jun; 13(6):2376-80. PubMed ID: 23634649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities.
    Graf A; Tropf L; Zakharko Y; Zaumseil J; Gather MC
    Nat Commun; 2016 Oct; 7():13078. PubMed ID: 27721454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities.
    Graf A; Held M; Zakharko Y; Tropf L; Gather MC; Zaumseil J
    Nat Mater; 2017 Sep; 16(9):911-917. PubMed ID: 28714985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collective Strong Light-Matter Coupling in Hierarchical Microcavity-Plasmon-Exciton Systems.
    Bisht A; Cuadra J; Wersäll M; Canales A; Antosiewicz TJ; Shegai T
    Nano Lett; 2019 Jan; 19(1):189-196. PubMed ID: 30500202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Plasmon Enhanced Strong Exciton-Photon Coupling in Hybrid Inorganic-Organic Perovskite Nanowires.
    Shang Q; Zhang S; Liu Z; Chen J; Yang P; Li C; Li W; Zhang Y; Xiong Q; Liu X; Zhang Q
    Nano Lett; 2018 Jun; 18(6):3335-3343. PubMed ID: 29722986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room temperature strong coupling in a semiconductor microcavity with embedded AlGaAs quantum wells designed for polariton lasing.
    Suchomel H; Kreutzer S; Jörg M; Brodbeck S; Pieczarka M; Betzold S; Dietrich CP; Sęk G; Schneider C; Höfling S
    Opt Express; 2017 Oct; 25(20):24816-24826. PubMed ID: 29041294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a highly efficient, strongly coupled organic light-emitting diode based on intracavity pumping architecture.
    Chang JF; Lin TY; Hsu CF; Chen SY; Hong SY; Ciou GS; Jaing CC; Lee CC
    Opt Express; 2020 Dec; 28(26):39781-39789. PubMed ID: 33379520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative evaluation of light-matter interaction parameters in organic single-crystal microcavities.
    Nishimura T; Yamashita K; Takahashi S; Yamao T; Hotta S; Yanagi H; Nakayama M
    Opt Lett; 2018 Mar; 43(5):1047-1050. PubMed ID: 29489777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong exciton-photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule.
    Holmes RJ; Forrest SR
    Phys Rev Lett; 2004 Oct; 93(18):186404. PubMed ID: 15525188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exciton-Polariton Properties in Planar Microcavity of Millimeter-Sized Two-Dimensional Perovskite Sheet.
    Zhang X; Shi H; Dai H; Zhang X; Sun XW; Zhang Z
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):5081-5089. PubMed ID: 31903740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap.
    Jayaprakash R; Kalaitzakis FG; Christmann G; Tsagaraki K; Hocevar M; Gayral B; Monroy E; Pelekanos NT
    Sci Rep; 2017 Jul; 7(1):5542. PubMed ID: 28717162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charged Polaron Polaritons in an Organic Semiconductor Microcavity.
    Cheng CY; Dhanker R; Gray CL; Mukhopadhyay S; Kennehan ER; Asbury JB; Sokolov A; Giebink NC
    Phys Rev Lett; 2018 Jan; 120(1):017402. PubMed ID: 29350953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid organic-inorganic polariton laser.
    Paschos GG; Somaschi N; Tsintzos SI; Coles D; Bricks JL; Hatzopoulos Z; Lidzey DG; Lagoudakis PG; Savvidis PG
    Sci Rep; 2017 Sep; 7(1):11377. PubMed ID: 28900206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong coupling and laser action of ladder-type oligo(p-phenylene)s in a microcavity.
    Höfner M; Kobin B; Hecht S; Henneberger F
    Chemphyschem; 2014 Dec; 15(17):3805-8. PubMed ID: 25234768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity.
    Pradeesh K; Baumberg JJ; Prakash GV
    Opt Express; 2009 Nov; 17(24):22171-8. PubMed ID: 19997463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum Yield of Polariton Emission from Hybrid Light-Matter States.
    Wang S; Chervy T; George J; Hutchison JA; Genet C; Ebbesen TW
    J Phys Chem Lett; 2014 Apr; 5(8):1433-9. PubMed ID: 26269990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large and well-defined Rabi splitting in a semiconductor nanogap cavity.
    Uemoto M; Ajiki H
    Opt Express; 2014 Sep; 22(19):22470-8. PubMed ID: 25321717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room temperature Frenkel-Wannier-Mott hybridization of degenerate excitons in a strongly coupled microcavity.
    Slootsky M; Liu X; Menon VM; Forrest SR
    Phys Rev Lett; 2014 Feb; 112(7):076401. PubMed ID: 24579619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.