These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16090785)

  • 1. Test of Lorentz invariance in electrodynamics using rotating cryogenic sapphire microwave oscillators.
    Stanwix PL; Tobar ME; Wolf P; Susli M; Locke CR; Ivanov EN; Winterflood J; van Kann F
    Phys Rev Lett; 2005 Jul; 95(4):040404. PubMed ID: 16090785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modern Michelson-Morley experiment using cryogenic optical resonators.
    Müller H; Herrmann S; Braxmaier C; Schiller S; Peters A
    Phys Rev Lett; 2003 Jul; 91(2):020401. PubMed ID: 12906465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tests of Lorentz invariance using a microwave resonator.
    Wolf P; Bize S; Clairon A; Luiten AN; Santarelli G; Tobar ME
    Phys Rev Lett; 2003 Feb; 90(6):060402. PubMed ID: 12633279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Test of the isotropy of the speed of light using a continuously rotating optical resonator.
    Herrmann S; Senger A; Kovalchuk E; Müller H; Peters A
    Phys Rev Lett; 2005 Oct; 95(15):150401. PubMed ID: 16241700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laboratory test of the isotropy of light propagation at the 10(-17) level.
    Eisele Ch; Nevsky AY; Schiller S
    Phys Rev Lett; 2009 Aug; 103(9):090401. PubMed ID: 19792767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tests of relativity by complementary rotating Michelson-Morley experiments.
    Müller H; Stanwix PL; Tobar ME; Ivanov E; Wolf P; Herrmann S; Senger A; Kovalchuk E; Peters A
    Phys Rev Lett; 2007 Aug; 99(5):050401. PubMed ID: 17930733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct terrestrial test of Lorentz symmetry in electrodynamics to 10(-18).
    Nagel M; Parker SR; Kovalchuk EV; Stanwix PL; Hartnett JG; Ivanov EN; Peters A; Tobar ME
    Nat Commun; 2015 Sep; 6():8174. PubMed ID: 26323989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Michelson-Morley analogue for electrons using trapped ions to test Lorentz symmetry.
    Pruttivarasin T; Ramm M; Porsev SG; Tupitsyn II; Safronova MS; Hohensee MA; Häffner H
    Nature; 2015 Jan; 517(7536):592-5. PubMed ID: 25631446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cold atom clock test of Lorentz invariance in the matter sector.
    Wolf P; Chapelet F; Bize S; Clairon A
    Phys Rev Lett; 2006 Feb; 96(6):060801. PubMed ID: 16605978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New limit on signals of Lorentz violation in electrodynamics.
    Lipa JA; Nissen JA; Wang S; Stricker DA; Avaloff D
    Phys Rev Lett; 2003 Feb; 90(6):060403. PubMed ID: 12633280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimum design of a high-Q room- temperature whispering-gallery-mode X-band sapphire resonator.
    Hartnett JG; Tobar ME; Ivanov EN; Luiten AN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jun; 60(6):1041-7. PubMed ID: 25004468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atom-interferometry tests of the isotropy of post-Newtonian gravity.
    Müller H; Chiow SW; Herrmann S; Chu S; Chung KY
    Phys Rev Lett; 2008 Jan; 100(3):031101. PubMed ID: 18232958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency conversion in a high Q-factor sapphire whispering gallery mode resonator due to paramagnetic nonlinearity.
    Creedon DL; Benmessai K; Tobar ME
    Phys Rev Lett; 2012 Oct; 109(14):143902. PubMed ID: 23083242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-power solid-state sapphire whispering gallery mode maser.
    Creedon DL; Benmessaï K; Tobar ME; Hartnett JG; Bourgeois PY; Kersale Y; Le Floch JM; Giordano V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):641-6. PubMed ID: 20211783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spherical-sapphire-based whispering gallery mode resonator thermometer.
    Yu L; Fernicola V
    Rev Sci Instrum; 2012 Sep; 83(9):094903. PubMed ID: 23020404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing for Lorentz violation: constraints on standard-model-extension parameters via lunar laser ranging.
    Battat JB; Chandler JF; Stubbs CW
    Phys Rev Lett; 2007 Dec; 99(24):241103. PubMed ID: 18233436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lorentz Symmetry Violations from Matter-Gravity Couplings with Lunar Laser Ranging.
    Bourgoin A; Le Poncin-Lafitte C; Hees A; Bouquillon S; Francou G; Angonin MC
    Phys Rev Lett; 2017 Nov; 119(20):201102. PubMed ID: 29219364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New method to build a high stability sapphire oscillator from the temperature compensation of the difference frequency between modes of orthogonal polarization.
    Tobar ME; Hamilton GL; Ivanov EN; Hartnett JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Mar; 50(3):214-9. PubMed ID: 12699154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cavity bounds on higher-order lorentz-violating coefficients.
    Parker SR; Mewes M; Stanwix PL; Tobar ME
    Phys Rev Lett; 2011 May; 106(18):180401. PubMed ID: 21635069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limits on Lorentz Invariance Violation from Coulomb Interactions in Nuclei and Atoms.
    Flambaum VV; Romalis MV
    Phys Rev Lett; 2017 Apr; 118(14):142501. PubMed ID: 28430493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.