These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 16090905)
1. Ehrenfest-time dependence of weak localization in open quantum dots. Rahav S; Brouwer PW Phys Rev Lett; 2005 Jul; 95(5):056806. PubMed ID: 16090905 [TBL] [Abstract][Full Text] [Related]
2. Exponential sensitivity to dephasing of electrical conduction through a quantum dot. Tworzydło J; Tajic A; Schomerus H; Brouwer PW; Beenakker CW Phys Rev Lett; 2004 Oct; 93(18):186806. PubMed ID: 15525195 [TBL] [Abstract][Full Text] [Related]
3. Quantum-to-classical crossover of quasibound states in open quantum systems. Schomerus H; Tworzydło J Phys Rev Lett; 2004 Oct; 93(15):154102. PubMed ID: 15524882 [TBL] [Abstract][Full Text] [Related]
4. Spectral form factor near the Ehrenfest time. Brouwer PW; Rahav S; Tian C Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066208. PubMed ID: 17280140 [TBL] [Abstract][Full Text] [Related]
5. Microscopic theory for the quantum to classical crossover in chaotic transport. Whitney RS; Jacquod P Phys Rev Lett; 2005 Mar; 94(11):116801. PubMed ID: 15903878 [TBL] [Abstract][Full Text] [Related]
6. Lyapunov Exponent and Out-of-Time-Ordered Correlator's Growth Rate in a Chaotic System. Rozenbaum EB; Ganeshan S; Galitski V Phys Rev Lett; 2017 Feb; 118(8):086801. PubMed ID: 28282154 [TBL] [Abstract][Full Text] [Related]
7. Ehrenfest-time dependence of quantum transport corrections and spectral statistics. Waltner D; Kuipers J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066205. PubMed ID: 21230721 [TBL] [Abstract][Full Text] [Related]
8. Ehrenfest time and the coherent backscattering off ballistic cavities. Rahav S; Brouwer PW Phys Rev Lett; 2006 May; 96(19):196804. PubMed ID: 16803126 [TBL] [Abstract][Full Text] [Related]
9. Statistical properties of the localization measure in a finite-dimensional model of the quantum kicked rotator. Manos T; Robnik M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042904. PubMed ID: 25974559 [TBL] [Abstract][Full Text] [Related]
10. Semiclassical theory of chaotic quantum transport. Richter K; Sieber M Phys Rev Lett; 2002 Nov; 89(20):206801. PubMed ID: 12443495 [TBL] [Abstract][Full Text] [Related]
11. Role of orbital dynamics in spin relaxation and weak antilocalization in quantum dots. Zaitsev O; Frustaglia D; Richter K Phys Rev Lett; 2005 Jan; 94(2):026809. PubMed ID: 15698215 [TBL] [Abstract][Full Text] [Related]
12. Semiclassical mechanism for the quantum decay in open chaotic systems. Waltner D; Gutiérrez M; Goussev A; Richter K Phys Rev Lett; 2008 Oct; 101(17):174101. PubMed ID: 18999749 [TBL] [Abstract][Full Text] [Related]
13. Statistics of chaotic resonances in an optical microcavity. Wang L; Lippolis D; Li ZY; Jiang XF; Gong Q; Xiao YF Phys Rev E; 2016 Apr; 93(4):040201. PubMed ID: 27176237 [TBL] [Abstract][Full Text] [Related]
14. Quantum-chaotic scattering effects in semiconductor microstructures. Baranger HU; Jalabert RA; Stone AD Chaos; 1993 Oct; 3(4):665-682. PubMed ID: 12780071 [TBL] [Abstract][Full Text] [Related]
15. Comment on "Ehrenfest times for classically chaotic systems". Tomsovic S; Heller EJ Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):038201; author reply 038202. PubMed ID: 14524936 [TBL] [Abstract][Full Text] [Related]
16. Interaction correction to the conductance of a ballistic conductor. Brouwer PW; Kupferschmidt JN Phys Rev Lett; 2008 Jun; 100(24):246805. PubMed ID: 18643611 [TBL] [Abstract][Full Text] [Related]
18. Quantum transport through ballistic cavities: soft vs hard quantum chaos. Huckestein B; Ketzmerick R; Lewenkopf CH Phys Rev Lett; 2000 Jun; 84(24):5504-7. PubMed ID: 10990980 [TBL] [Abstract][Full Text] [Related]
19. Ehrenfest-time-dependent excitation gap in a chaotic Andreev billiard. Adagideli I; Beenakker CW Phys Rev Lett; 2002 Dec; 89(23):237002. PubMed ID: 12485030 [TBL] [Abstract][Full Text] [Related]
20. Semiclassical transport in nearly symmetric quantum dots. II. Symmetry breaking due to asymmetric leads. Whitney RS; Schomerus H; Kopp M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056210. PubMed ID: 20365063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]