These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 16090962)

  • 1. Measuring the thermal conductivity of a single carbon nanotube.
    Fujii M; Zhang X; Xie H; Ago H; Takahashi K; Ikuta T; Abe H; Shimizu T
    Phys Rev Lett; 2005 Aug; 95(6):065502. PubMed ID: 16090962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate.
    Yang J; Yang Y; Waltermire SW; Gutu T; Zinn AA; Xu TT; Chen Y; Li D
    Small; 2011 Aug; 7(16):2334-40. PubMed ID: 21648073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method.
    Li Q; Liu C; Wang X; Fan S
    Nanotechnology; 2009 Apr; 20(14):145702. PubMed ID: 19420532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy.
    Sahoo S; Chitturi VR; Agarwal R; Jiang JW; Katiyar RS
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19958-65. PubMed ID: 25350877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of the thermal conductivity of carbon nanotube--tissue phantom composites with the hot wire probe method.
    Sarkar S; Zimmermann K; Leng W; Vikesland P; Zhang J; Dorn H; Diller T; Rylander C; Rylander MN
    Ann Biomed Eng; 2011 Jun; 39(6):1745-58. PubMed ID: 21360225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the thermal conductivity of a water-based single-wall carbon nanotube colloidal suspension with a modified 3- omega method.
    Choi TY; Maneshian MH; Kang B; Chang WS; Han CS; Poulikakos D
    Nanotechnology; 2009 Aug; 20(31):315706. PubMed ID: 19597251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model for the effective thermal conductivity of carbon nanotube composites.
    Xue QZ
    Nanotechnology; 2006 Mar; 17(6):1655-60. PubMed ID: 26558574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations.
    Alaghemandi M; Algaer E; Böhm MC; Müller-Plathe F
    Nanotechnology; 2009 Mar; 20(11):115704. PubMed ID: 19420452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal transport measurements of individual multiwalled nanotubes.
    Kim P; Shi L; Majumdar A; McEuen PL
    Phys Rev Lett; 2001 Nov; 87(21):215502. PubMed ID: 11736348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes.
    Aliev AE; Lima MH; Silverman EM; Baughman RH
    Nanotechnology; 2010 Jan; 21(3):035709. PubMed ID: 19966394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal conductance of an individual single-wall carbon nanotube above room temperature.
    Pop E; Mann D; Wang Q; Goodson K; Dai H
    Nano Lett; 2006 Jan; 6(1):96-100. PubMed ID: 16402794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence of Thermal Conductivity on Thickness in Single-Walled Carbon Nanotube Films.
    Lee KM; Shrestha R; Dangol A; Chang WS; Coker Z; Choi TY
    J Nanosci Nanotechnol; 2016 Jan; 16(1):1028-32. PubMed ID: 27398564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites.
    Gulotty R; Castellino M; Jagdale P; Tagliaferro A; Balandin AA
    ACS Nano; 2013 Jun; 7(6):5114-21. PubMed ID: 23672711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal conductivity of carbon nanotube cross-bar structures.
    Evans WJ; Keblinski P
    Nanotechnology; 2010 Nov; 21(47):475704. PubMed ID: 21030762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chirality and Diameter Influence on Thermal Conductivity of Single-Walled Carbon Nanotubes.
    Feng Y; Zhu J; Tang DW
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3092-7. PubMed ID: 26353541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes.
    Pradhan NR; Duan H; Liang J; Iannacchione GS
    Nanotechnology; 2009 Jun; 20(24):245705. PubMed ID: 19471077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nonlinear effective thermal conductivity model for carbon nanotube and nanofiber suspensions.
    Koo J; Kang Y; Kleinstreuer C
    Nanotechnology; 2008 Sep; 19(37):375705. PubMed ID: 21832559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metalized nanotube tips improve through thickness thermal conductivity in adhesive joints.
    Ganguli S; Sihn S; Roy AK; Dai L; Qu L
    J Nanosci Nanotechnol; 2009 Mar; 9(3):1727-33. PubMed ID: 19435032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature Distribution and Thermal Conductivity Measurements of Chirality-Assigned Single-Walled Carbon Nanotubes by Photoluminescence Imaging Spectroscopy.
    Yoshino K; Kato T; Saito Y; Shitaba J; Hanashima T; Nagano K; Chiashi S; Homma Y
    ACS Omega; 2018 Apr; 3(4):4352-4356. PubMed ID: 31458660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical absorptance measurement of an individual multiwall carbon nanotube using a T type thermal probe method.
    Li QY; Liu JH; Wang HD; Zhang X; Takahashi K
    Rev Sci Instrum; 2013 Oct; 84(10):104905. PubMed ID: 24182149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.