BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 16091609)

  • 1. Degradation of methyl isothiocyanate and chloropicrin in forest nursery soils.
    Zhang Y; Spokas K; Wang D
    J Environ Qual; 2005; 34(5):1566-72. PubMed ID: 16091609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fumigant distribution in forest nursery soils under water seal and plastic film after application of dazomet, metam-sodium and chloropicrin.
    Wang D; Fraedrich SW; Juzwik J; Spokas K; Zhang Y; Koskinen WC
    Pest Manag Sci; 2006 Mar; 62(3):263-73. PubMed ID: 16475238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactive effect of organic amendment and environmental factors on degradation of 1,3-dichloropropene and chloropicrin in soil.
    Qin R; Gao S; Ajwa H; Hanson BD; Trout TJ; Wang D; Guo M
    J Agric Food Chem; 2009 Oct; 57(19):9063-70. PubMed ID: 19722521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emission, distribution and leaching of methyl isothiocyanate and chloropicrin under different surface containments.
    Zhang Y; Wang D
    Chemosphere; 2007 Jun; 68(3):445-54. PubMed ID: 17289109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil fate of agricultural fumigants in raised-bed, plasticulture systems in the southeastern United States.
    Chellemi DO; Ajwa HA; Sullivan DA; Alessandro R; Gilreath JP; Yates SR
    J Environ Qual; 2011; 40(4):1204-14. PubMed ID: 21712590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial aspects of accelerated degradation of metam sodium in soil.
    Triky-Dotan S; Ofek M; Austerweil M; Steiner B; Minz D; Katan J; Gamliel A
    Phytopathology; 2010 Apr; 100(4):367-75. PubMed ID: 20205540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of combined application of methyl isothiocyanate and chloropicrin on their transformation.
    Zheng W; Yates SR; Papiernik SK; Guo M
    J Environ Qual; 2004; 33(6):2157-64. PubMed ID: 15537938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior of methyl isothiocyanate in soils under field conditions in Morocco.
    El Hadiri N; Ammati M; Chgoura M; Mounir K
    Chemosphere; 2003 Aug; 52(5):927-32. PubMed ID: 12757794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated degradation of metam-sodium in soil and consequences for root-disease management.
    Triky-Dotan S; Austerweil M; Steiner B; Peretz-Alon Y; Katan J; Gamliel A
    Phytopathology; 2009 Apr; 99(4):362-8. PubMed ID: 19271977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissipation kinetics of pre-plant pesticides in greenhouse-devoted soils.
    López-Fernández O; Rial-Otero R; Simal-Gándara J; Boned J
    Sci Total Environ; 2016 Feb; 543(Pt A):1-8. PubMed ID: 26575632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of application rate on fumigant degradation in five agricultural soils.
    Qin R; Gao S; Ajwa H; Hanson BD
    Sci Total Environ; 2016 Jan; 541():528-534. PubMed ID: 26439645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of methyl iodide in soil: effects of environmental factors.
    Guo M; Gao S
    J Environ Qual; 2009; 38(2):513-9. PubMed ID: 19202021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissipation of soil fumigants from soil following repeated applications.
    Triky-Dotan S; Ajwa HA
    Pest Manag Sci; 2014 Mar; 70(3):440-7. PubMed ID: 23744676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enrichment and molecular characterization of chloropicrin- and metam-sodium-degrading microbial communities.
    Ibekwe AM; Papiernik SK; Yang CH
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):325-32. PubMed ID: 15309337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface water seal application to minimize volatilization loss of methyl isothiocyanate from soil columns.
    Simpson CR; Nelson SD; Stratmann JE; Ajwa HA
    Pest Manag Sci; 2010 Jun; 66(6):686-92. PubMed ID: 20232287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of soil fumigants as affected by initial concentration and temperature.
    Ma QL; Gan J; Papiernik SK; Becker JO; Yates SR
    J Environ Qual; 2001; 30(4):1278-86. PubMed ID: 11476506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring flux of soil fumigants using the aerodynamic and dynamic flux chamber methods.
    van Wesenbeeck IJ; Knuteson JA; Barnekow DE; Phillips AM
    J Environ Qual; 2007; 36(3):613-20. PubMed ID: 17412897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavior of 1,3-dichloropropene and methyl isothiocyanate in undisturbed soil columns.
    El Hadiri N; Ammati M; Chgoura M; Mounir K
    Chemosphere; 2003 Aug; 52(5):893-9. PubMed ID: 12757790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical, chemical and environmental properties of selected chemical alternatives for the pre-plant use of methyl bromide as soil fumigant.
    Ruzo LO
    Pest Manag Sci; 2006 Feb; 62(2):99-113. PubMed ID: 16308867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of manure and water applications on 1,3-dichloropropene and chloropicrin emissions in a field trial.
    Gao S; Qin R; Hanson BD; Tharayil N; Trout TJ; Wang D; Gerik J
    J Agric Food Chem; 2009 Jun; 57(12):5428-34. PubMed ID: 19459700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.