BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16091892)

  • 1. Carbon and nitrogen sources influence the ligninolytic enzyme activity of Trametes versicolor.
    Mikiashvili N; Elisashvili V; Wasser S; Nevo E
    Biotechnol Lett; 2005 Jul; 27(13):955-9. PubMed ID: 16091892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the role of proteases in the white-rot fungus Trametes versicolor: effect of PMSF and chloroquine on ligninolytic enzymes activity.
    Staszczak M; Zdunek E; Leonowicz A
    J Basic Microbiol; 2000; 40(1):51-63. PubMed ID: 10746199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of fungal co-cultures on ligninolytic enzyme activities, H
    Lira-Pérez J; Rodríguez-Vázquez R; Chan-Cupul W
    Prep Biochem Biotechnol; 2020; 50(6):607-618. PubMed ID: 32013716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening of laccase, manganese peroxidase, and versatile peroxidase activities of the genus Pleurotus in media with some raw plant materials as carbon sources.
    Stajic M; Persky L; Cohen E; Hadar Y; Brceski I; Wasser SP; Nevo E
    Appl Biochem Biotechnol; 2004 Jun; 117(3):155-64. PubMed ID: 15304767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of Lignocellulosic Waste for Laccase Production by
    Yuliana T; Komara DZ; Saripudin GLU; Subroto E; Safitri R
    Pak J Biol Sci; 2021 Jan; 24(6):699-705. PubMed ID: 34486346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of bezafibrate, gemfibrozil, indomethacin, sulfamethoxazole, and diclofenac removal by ligninolytic enzymes.
    Camarillo Ravelo D; Loera Corral O; González-Martínez I; Chan Cupul W; Rodríguez Nava CO
    Prep Biochem Biotechnol; 2020; 50(6):592-597. PubMed ID: 32003284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of Genes Encoding Manganese Peroxidase and Laccase of
    Ho PY; Namasivayam P; Sundram S; Ho CL
    Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33114747
    [No Abstract]   [Full Text] [Related]  

  • 8. Evaluation of Lignin-Modifying Enzyme Activity of Trametes spp. (Agaricomycetes) Isolated from Georgian Forests with an Emphasis on T. multicolor Biosynthetic Potential.
    Kachlishvili E; Asatiani MD; Kobakhidze A; Elisashvili V
    Int J Med Mushrooms; 2018; 20(10):971-987. PubMed ID: 30806269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of lignin preparations and cultivation conditions on the ligninolytic complex of the fungus Pleurotus floridae, the wood white-rot pathogen].
    Dombrovskaia EN; Kostyshin SS
    Ukr Biokhim Zh (1978); 1997; 69(1):26-31. PubMed ID: 9454373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation of brightening with cumulative enzyme activity related to lignin biodegradation during biobleaching of kraft pulp by white rot fungi in the solid-state fermentation system.
    Katagiri N; Tsutsumi Y; Nishida T
    Appl Environ Microbiol; 1995 Feb; 61(2):617-22. PubMed ID: 7574600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligninolytic enzyme production in selected sub-tropical white rot fungi under different culture conditions.
    Tekere M; Zvauya R; Read JS
    J Basic Microbiol; 2001; 41(2):115-29. PubMed ID: 11441459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of manganese peroxidase and laccase to dye decoloration by Trametes versicolor.
    Champagne PP; Ramsay JA
    Appl Microbiol Biotechnol; 2005 Dec; 69(3):276-85. PubMed ID: 15834615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of manganic chelates by laccase from the lignin-degrading fungus Trametes (Coriolus) versicolor.
    Archibald F; Roy B
    Appl Environ Microbiol; 1992 May; 58(5):1496-9. PubMed ID: 1622216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature affects the production, activity and stability of ligninolytic enzymes in Pleurotus ostreatus and Trametes versicolor.
    Snajdr J; Baldrian P
    Folia Microbiol (Praha); 2007; 52(5):498-502. PubMed ID: 18298047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polar vineyard pruning extracts increase the activity of the main ligninolytic enzymes in Lentinula edodes cultures.
    Harris-Valle C; Esqueda M; Sánchez A; Beltrán-García M; Valenzuela-Soto EM
    Can J Microbiol; 2007 Oct; 53(10):1150-7. PubMed ID: 18026207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced enzyme production with the pelleted form of D. squalens in laboratory bioreactors using added natural lignin inducer.
    Babič J; Pavko A
    J Ind Microbiol Biotechnol; 2012 Mar; 39(3):449-57. PubMed ID: 21922328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laccase and manganese peroxidase activities of Phellinus robustus and Ganoderma adspersum grown on food industry wastes in submerged fermentation.
    Songulashvili G; Elisashvili V; Wasser S; Nevo E; Hadar Y
    Biotechnol Lett; 2006 Sep; 28(18):1425-9. PubMed ID: 16823599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of inductive influence of syryngic acid and wastes containing lignosulfonic acids on peroxidase activity and its synthesis in Trametes versicolor cultures.
    Lobarzewski J
    Acta Microbiol Pol; 1981; 30(2):143-9. PubMed ID: 6168174
    [No Abstract]   [Full Text] [Related]  

  • 19. Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens.
    Périé FH; Gold MH
    Appl Environ Microbiol; 1991 Aug; 57(8):2240-5. PubMed ID: 1768094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioremediation of paper and pulp mill effluents.
    Murugesan K
    Indian J Exp Biol; 2003 Nov; 41(11):1239-48. PubMed ID: 15332490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.