These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 16092219)

  • 1. Improved air-silica photonic crystal with a triangular airhole arrangement for hollow-core photonic bandgap fiber design.
    Yan M; Shum P
    Opt Lett; 2005 Aug; 30(15):1920-2. PubMed ID: 16092219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of air-guiding honeycomb photonic bandgap fiber.
    Yan M; Shum P; Hu J
    Opt Lett; 2005 Mar; 30(5):465-7. PubMed ID: 15789704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hollow-core photonic bandgap fibers based on a square lattice cladding.
    Poletti F; Richardson DJ
    Opt Lett; 2007 Aug; 32(16):2282-4. PubMed ID: 17700759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect.
    Barkou SE; Broeng J; Bjarklev A
    Opt Lett; 1999 Jan; 24(1):46-8. PubMed ID: 18071403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers.
    Digonnet M; Kim H; Shin J; Fan S; Kino G
    Opt Express; 2004 May; 12(9):1864-72. PubMed ID: 19475017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High group birefringence in air-core photonic bandgap fibers.
    Alam MS; Saitoh K; Koshiba M
    Opt Lett; 2005 Apr; 30(8):824-6. PubMed ID: 15865367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-Dependent Group Delay of Photonic-Bandgap Hollow-Core Fiber Tuned by Surface-Mode Coupling.
    Wang Y; Li Z; Yu F; Wang M; Han Y; Hu L; Knight J
    Opt Express; 2022 Jan; 30(1):222-231. PubMed ID: 35201201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic bandgap fibers with resonant structures for tailoring the dispersion.
    Várallyay Z; Saitoh K; Szabó A; Szipocs R
    Opt Express; 2009 Jul; 17(14):11869-83. PubMed ID: 19582101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling and decoupling of dual-core photonic bandgap fibers.
    Wang Z; Kai G; Liu Y; Liu J; Zhang C; Sun T; Wang C; Zhang W; Yuan S; Dong X
    Opt Lett; 2005 Oct; 30(19):2542-4. PubMed ID: 16208893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical devices based on liquid crystal photonic bandgap fibres.
    Larsen T; Bjarklev A; Hermann D; Broeng J
    Opt Express; 2003 Oct; 11(20):2589-96. PubMed ID: 19471372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosensitive, all-glass AgPO3/silicaphotonic bandgap fiber.
    Konidakis I; Zito G; Pissadakis S
    Opt Lett; 2012 Jul; 37(13):2499-501. PubMed ID: 22743434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double photonic bandgap hollow-core photonic crystal fiber.
    Light PS; Couny F; Wang YY; Wheeler NV; Roberts PJ; Benabid F
    Opt Express; 2009 Aug; 17(18):16238-43. PubMed ID: 19724623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of realistic cladding structures for air-core photonic bandgap fibers.
    Mortensen NA; Nielsen MD
    Opt Lett; 2004 Feb; 29(4):349-51. PubMed ID: 14971749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Birefringent all-solid hybrid microstructured fiber.
    Goto R; Jackson SD; Fleming S; Kuhlmey BT; Eggleton BJ; Himeno K
    Opt Express; 2008 Nov; 16(23):18752-63. PubMed ID: 19581962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers.
    Murao T; Saitoh K; Koshiba M
    Opt Express; 2009 Apr; 17(9):7615-29. PubMed ID: 19399140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers.
    Amezcua-Correa R; Broderick NG; Petrovich MN; Poletti F; Richardson DJ
    Opt Express; 2006 Aug; 14(17):7974-85. PubMed ID: 19529167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-loss hollow-core silica/air photonic bandgap fibre.
    Smith CM; Venkataraman N; Gallagher MT; Müller D; West JA; Borrelli NF; Allan DC; Koch KW
    Nature; 2003 Aug; 424(6949):657-9. PubMed ID: 12904788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding.
    Murao T; Saitoh K; Koshiba M
    Opt Express; 2011 Jan; 19(3):1713-27. PubMed ID: 21368985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers.
    Kim HK; Digonnet M; Kino G; Shin J; Fan S
    Opt Express; 2004 Jul; 12(15):3436-42. PubMed ID: 19483869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers.
    Dangui V; Kim H; Digonnet M; Kino G
    Opt Express; 2005 Sep; 13(18):6669-84. PubMed ID: 19498684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.