These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16092342)

  • 1. Regenerative 40 Gbit/s wavelength converter based on similariton generation.
    Finot C; Pitois S; Millot G
    Opt Lett; 2005 Jul; 30(14):1776-8. PubMed ID: 16092342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of optical pulses by use of similaritons.
    Finot C; Millot G
    Opt Express; 2004 Oct; 12(21):5104-9. PubMed ID: 19484064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime.
    Finot C; Parmigiani F; Petropoulos P; Richardson D
    Opt Express; 2006 Apr; 14(8):3161-70. PubMed ID: 19516457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bit-rate-transparent optical return-to-zero-to-nonreturn-to-zero format conversion based on linear spectral phase filtering of the RZ signal.
    Maram R; Azaña J
    Opt Lett; 2017 Dec; 42(24):5058-5061. PubMed ID: 29240136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 10 Gbit/s optical wavelength converter with a Brillouin scattering-based spectral filter.
    Granot E; Sternklar S; Chayet H; Ben-Ezra S; Narkiss N; Shahar N; Sher A; Tsadka S
    Appl Opt; 2005 Aug; 44(23):4959-64. PubMed ID: 16114535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications.
    Morin P; Fatome J; Finot C; Pitois S; Claveau R; Millot G
    Opt Express; 2011 Aug; 19(18):17158-66. PubMed ID: 21935078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 640 Gbit/s return-to-zero to non-return-to-zero format conversion based on optical linear spectral phase filtering.
    Maram R; Kong D; Galili M; Oxenløwe LK; Azaña J
    Opt Lett; 2016 Jan; 41(1):64-7. PubMed ID: 26696159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of intrachannel four-wave-mixing induced ghost pulses in high-speed transmissions by phase inversion between adjacent marker blocks.
    Liu X; Wei X; Gnauck AH; Xu C; Wickham LK
    Opt Lett; 2002 Jul; 27(13):1177-9. PubMed ID: 18026399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconfigurable optical generation of nine Nyquist WDM channels with sinc-shaped temporal pulse trains using a single microresonator-based Kerr frequency comb.
    Alishahi F; Fallahpour A; Mohajerin-Ariaei A; Cao Y; Kordts A; Pfeiffer MHP; Karpov M; Almaiman A; Liao P; Zou K; Liu C; Willner AN; Tur M; Kippenberg TJ; Willner AE
    Opt Lett; 2019 Apr; 44(7):1852-1855. PubMed ID: 30933164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of parabolic similaritons in tapered silicon photonic wires: comparison of pulse dynamics at telecom and mid-infrared wavelengths.
    Lavdas S; Driscoll JB; Jiang H; Grote RR; Osgood RM; Panoiu NC
    Opt Lett; 2013 Oct; 38(19):3953-6. PubMed ID: 24081097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eightfold 40-320 Gbit/s phase-coherent multiplexing and 320-40 Gbit/s demultiplexing using highly nonlinear fibers.
    Wu X; Bogoni A; Yilmaz OF; Nuccio S; Wang J; Willner AE
    Opt Lett; 2010 Jun; 35(11):1896-8. PubMed ID: 20517454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 10 Gbit/s all-optical non-return to zero-return-to-zero data format conversion based on a backward dark-optical-comb injected semiconductor optical amplifier.
    Lin GR; Yu KC; Chang YC
    Opt Lett; 2006 May; 31(10):1376-8. PubMed ID: 16642110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-similar pulse evolution in an all-normal-dispersion laser.
    Renninger WH; Chong A; Wise FW
    Phys Rev A; 2010 Aug; 82(2):. PubMed ID: 21765623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental realization of a mode-locked parabolic Raman fiber oscillator.
    Aguergaray C; Méchin D; Kruglov V; Harvey JD
    Opt Express; 2010 Apr; 18(8):8680-7. PubMed ID: 20588711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of chirped and chirp-free similaritons in optical fiber amplifiers.
    Ponomarenko SA; Agrawal GP
    Opt Express; 2007 Mar; 15(6):2963-73. PubMed ID: 19532533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz.
    Schmogrow R; Hillerkuss D; Wolf S; Bäuerle B; Winter M; Kleinow P; Nebendahl B; Dippon T; Schindler PC; Koos C; Freude W; Leuthold J
    Opt Express; 2012 Mar; 20(6):6439-47. PubMed ID: 22418526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymptotic characteristics of parabolic similariton pulses in optical fiber amplifiers.
    Finot C; Millot G; Dudley JM
    Opt Lett; 2004 Nov; 29(21):2533-5. PubMed ID: 15584285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parabolic and hyper-Gaussian similaritons in fiber amplifiers and lasers with gain saturation.
    Kruglov VI; Aguergaray C; Harvey JD
    Opt Express; 2012 Apr; 20(8):8741-54. PubMed ID: 22513585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic parabolic pulse generation using temporal shaping of wavelength to time mapped pulses.
    Nguyen D; Piracha MU; Mandridis D; Delfyett PJ
    Opt Express; 2011 Jun; 19(13):12305-11. PubMed ID: 21716467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm.
    Billet C; Dudley J; Joly N; Knight J
    Opt Express; 2005 May; 13(9):3236-41. PubMed ID: 19495224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.