These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16092544)

  • 21. Medial olivocochlear efferent system in humans studied with amplitude-modulated tones.
    Maison S; Micheyl C; Collet L
    J Neurophysiol; 1997 Apr; 77(4):1759-68. PubMed ID: 9114234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contralateral suppression of TEOAE in diabetic children. Effects of 1.0 kHz and 2.0 kHz pure tone stimulation--preliminary study.
    Namyslowski G; Morawski K; Kossowska I; Lisowska G; Koehler B; Jarosz-Chobot P
    Scand Audiol Suppl; 2001; (52):126-9. PubMed ID: 11318442
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Psychophysical correlates of contralateral efferent suppression. I. The role of the medial olivocochlear system in "central masking" in nonhuman primates.
    Smith DW; Turner DA; Henson MM
    J Acoust Soc Am; 2000 Feb; 107(2):933-41. PubMed ID: 10687702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tone-burst and click-evoked otoacoustic emissions in subjects with hearing loss above 0.25, 0.5, and 1 kHz.
    Jedrzejczak WW; Kochanek K; Trzaskowski B; Pilka E; Skarzynski PH; Skarzynski H
    Ear Hear; 2012; 33(6):757-67. PubMed ID: 22710662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of contralateral stimulation on acoustic reflectance measurements.
    Pichelli TS; Soares JC; Cibin BC; Carvallo RM
    Braz J Otorhinolaryngol; 2015; 81(5):466-72. PubMed ID: 26248969
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reflex control of the human inner ear: a half-octave offset in medial efferent feedback that is consistent with an efferent role in the control of masking.
    Lilaonitkul W; Guinan JJ
    J Neurophysiol; 2009 Mar; 101(3):1394-406. PubMed ID: 19118109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contralateral acoustic stimulation induces a phase advance in evoked otoacoustic emissions in humans.
    Giraud AL; Perrin E; Chéry-Croze S; Chays A; Collet L
    Hear Res; 1996 May; 94(1-2):54-62. PubMed ID: 8789811
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Separating the contributions of olivocochlear and middle ear muscle reflexes in modulation of distortion product otoacoustic emission levels.
    Wolter NE; Harrison RV; James AL
    Audiol Neurootol; 2014; 19(1):41-8. PubMed ID: 24335024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of contralateral acoustic stimulation on distortion-product and spontaneous otoacoustic emissions in the barn owl.
    Manley GA; Taschenberger G; Oeckinghaus H
    Hear Res; 1999 Dec; 138(1-2):1-12. PubMed ID: 10575110
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Repeatability of high-frequency distortion-product otoacoustic emissions in normal-hearing adults.
    Dreisbach LE; Long KM; Lees SE
    Ear Hear; 2006 Oct; 27(5):466-79. PubMed ID: 16957498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of the olivocochlear efferent reflex strength in the susceptibility to temporary hearing deterioration after music exposure in young adults.
    Hannah K; Ingeborg D; Leen M; Annelies B; Birgit P; Freya S; Bart V
    Noise Health; 2014; 16(69):108-15. PubMed ID: 24804715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contralateral efferent regulation of human cochlear tuning: behavioural observations and computer model simulations.
    Lopez-Poveda EA; Aguilar E; Johannesen PT; Eustaquio-Martín A
    Adv Exp Med Biol; 2013; 787():47-54. PubMed ID: 23716208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human medial olivocochlear reflex: effects as functions of contralateral, ipsilateral, and bilateral elicitor bandwidths.
    Lilaonitkul W; Guinan JJ
    J Assoc Res Otolaryngol; 2009 Sep; 10(3):459-70. PubMed ID: 19263165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous measurement of noise-activated middle-ear muscle reflex and stimulus frequency otoacoustic emissions.
    Goodman SS; Keefe DH
    J Assoc Res Otolaryngol; 2006 Jun; 7(2):125-39. PubMed ID: 16568366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Medial olivocochlear-induced transient-evoked otoacoustic emission amplitude shifts in individual subjects.
    Goodman SS; Mertes IB; Lewis JD; Weissbeck DK
    J Assoc Res Otolaryngol; 2013 Dec; 14(6):829-42. PubMed ID: 23982894
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-term moderate noise exposure enhances the medial olivocochlear reflex.
    Yin D; Ren L; Li J; Shi Y; Duan Y; Xie Y; Zhang T; Dai P
    Auris Nasus Larynx; 2020 Oct; 47(5):769-777. PubMed ID: 32404262
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Olivocochlear efferent vs. middle-ear contributions to the alteration of otoacoustic emissions by contralateral noise.
    Büki B; Wit HP; Avan P
    Brain Res; 2000 Jan; 852(1):140-50. PubMed ID: 10661505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spontaneous otoacoustic emissions, threshold microstructure, and psychophysical tuning over a wide frequency range in humans.
    Baiduc RR; Lee J; Dhar S
    J Acoust Soc Am; 2014 Jan; 135(1):300-14. PubMed ID: 24437770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Response properties of cochlear efferent neurons: monaural vs. binaural stimulation and the effects of noise.
    Liberman MC
    J Neurophysiol; 1988 Nov; 60(5):1779-98. PubMed ID: 3199181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Psychoacoustic analyses of cochlear mechanisms in tinnitus patients with normal auditory thresholds.
    Buzo BC; Carvallo RM
    Int J Audiol; 2014 Jan; 53(1):40-7. PubMed ID: 24168288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.