These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1855 related articles for article (PubMed ID: 16092826)

  • 1. Quantum mechanical continuum solvation models.
    Tomasi J; Mennucci B; Cammi R
    Chem Rev; 2005 Aug; 105(8):2999-3093. PubMed ID: 16092826
    [No Abstract]   [Full Text] [Related]  

  • 2. Environmental effects on the spectroscopic properties of gallic acid: a combined classical and quantum mechanical study.
    Cappelli C; Mennucci B; Monti S
    J Phys Chem A; 2005 Mar; 109(9):1933-43. PubMed ID: 16833527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are mixed explicit/implicit solvation models reliable for studying phosphate hydrolysis? A comparative study of continuum, explicit and mixed solvation models.
    Kamerlin SC; Haranczyk M; Warshel A
    Chemphyschem; 2009 May; 10(7):1125-34. PubMed ID: 19301306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic excitation energies of molecules in solution within continuum solvation models: investigating the discrepancy between state-specific and linear-response methods.
    Corni S; Cammi R; Mennucci B; Tomasi J
    J Chem Phys; 2005 Oct; 123(13):134512. PubMed ID: 16223319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersion and repulsion contributions to the solvation free energy: comparison of quantum mechanical and classical approaches in the polarizable continuum model.
    Curutchet C; Orozco M; Luque FJ; Mennucci B; Tomasi J
    J Comput Chem; 2006 Nov; 27(15):1769-80. PubMed ID: 16917857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative theoretical study of dipeptide solvation in water.
    Hugosson HW; Laio A; Maurer P; Rothlisberger U
    J Comput Chem; 2006 Apr; 27(5):672-84. PubMed ID: 16477697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 Apr; 113(14):4538-43. PubMed ID: 19253989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvation of N3- at the water surface: the polarizable continuum model approach.
    Bondesson L; Frediani L; Agren H; Mennucci B
    J Phys Chem B; 2006 Jun; 110(23):11361-8. PubMed ID: 16771407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vertical electronic excitation with a dielectric continuum model of solvation including volume polarization. II. Implementation and applications.
    Chipman DM
    J Chem Phys; 2009 Jul; 131(1):014104. PubMed ID: 19586093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QCRNA 1.0: a database of quantum calculations for RNA catalysis.
    Giese TJ; Gregersen BA; Liu Y; Nam K; Mayaan E; Moser A; Range K; Faza ON; Lopez CS; de Lera AR; Schaftenaar G; Lopez X; Lee TS; Karypis G; York DM
    J Mol Graph Model; 2006 Dec; 25(4):423-33. PubMed ID: 16580853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new quantum method for electrostatic solvation energy of protein.
    Mei Y; Ji C; Zhang JZ
    J Chem Phys; 2006 Sep; 125(9):094906. PubMed ID: 16965118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical prediction of pKa values for methacrylic acid oligomers using combined quantum mechanical and continuum solvation methods.
    Dong H; Du H; Qian X
    J Phys Chem A; 2008 Dec; 112(49):12687-94. PubMed ID: 19053563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of solvation free energy from quantum mechanical charge density and continuum dielectric theory.
    Wang M; Wong CF
    J Phys Chem A; 2006 Apr; 110(14):4873-9. PubMed ID: 16599457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vertical electronic excitation with a dielectric continuum model of solvation including volume polarization. I. Theory.
    Chipman DM
    J Chem Phys; 2009 Jul; 131(1):014103. PubMed ID: 19586092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Monte Carlo formulation of volume polarization in dielectric continuum theory.
    Amovilli C; Filippi C; Floris FM
    J Chem Phys; 2008 Dec; 129(24):244106. PubMed ID: 19123494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantum mechanical strategy to investigate the structure of liquids: the cases of acetonitrile, formamide, and their mixture.
    Mennucci B; da Silva CO
    J Phys Chem B; 2008 Jun; 112(22):6803-13. PubMed ID: 18461992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling quantum Monte Carlo to a nonlinear polarizable continuum model for spherical solutes.
    Amovilli C; Filippi C; Floris FM
    J Phys Chem B; 2006 Dec; 110(51):26225-31. PubMed ID: 17181280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimerisation of urea in water solution: a quantum mechanical investigation.
    Ramondo F; Bencivenni L; Caminiti R; Pieretti A; Gontrani L
    Phys Chem Chem Phys; 2007 Jun; 9(18):2206-15. PubMed ID: 17487317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvation dynamics in acetonitrile: a study incorporating solute electronic response and nuclear relaxation.
    Ingrosso F; Ladanyi BM; Mennucci B; Elola MD; Tomasi J
    J Phys Chem B; 2005 Mar; 109(8):3553-64. PubMed ID: 16851393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 93.