BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 16093442)

  • 1. The antiproliferative agent MLN944 preferentially inhibits transcription.
    Byers SA; Schafer B; Sappal DS; Brown J; Price DH
    Mol Cancer Ther; 2005 Aug; 4(8):1260-7. PubMed ID: 16093442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological characterization of MLN944: a potent DNA binding agent.
    Sappal DS; McClendon AK; Fleming JA; Thoroddsen V; Connolly K; Reimer C; Blackman RK; Bulawa CE; Osheroff N; Charlton P; Rudolph-Owen LA
    Mol Cancer Ther; 2004 Jan; 3(1):47-58. PubMed ID: 14749475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel DNA bis-intercalation by MLN944, a potent clinical bisphenazine anticancer drug.
    Dai J; Punchihewa C; Mistry P; Ooi AT; Yang D
    J Biol Chem; 2004 Oct; 279(44):46096-103. PubMed ID: 15317822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro assessment of novel transcription inhibitors and topoisomerase poisons in rhabdomyosarcoma cell lines.
    Wolf SJ; Wakelin LP; He Z; Stewart BW; Catchpoole DR
    Cancer Chemother Pharmacol; 2009 Nov; 64(6):1059-69. PubMed ID: 19277661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures and dynamics of DNA complexes of the desmethyl analog of the cytotoxin MLN944: Insights into activity when a methyl isn't futile.
    Serobian A; Pracey CP; Thomas DS; Denny WA; Ball GE; Wakelin LPG
    J Mol Recognit; 2020 Aug; 33(8):e2843. PubMed ID: 32253794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. XR5944: A potent inhibitor of estrogen receptors.
    Punchihewa C; De Alba A; Sidell N; Yang D
    Mol Cancer Ther; 2007 Jan; 6(1):213-9. PubMed ID: 17218634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel DNA Bis-Intercalator XR5944 as a Potent Anticancer Drug-Design and Mechanism of Action.
    Buric AJ; Dickerhoff J; Yang D
    Molecules; 2021 Jul; 26(14):. PubMed ID: 34299405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transcription cycle of RNA polymerase II in living cells.
    Kimura H; Sugaya K; Cook PR
    J Cell Biol; 2002 Dec; 159(5):777-82. PubMed ID: 12473686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective inhibition of rat liver nuclear RNA polymerase II by actinomycin D in vivo.
    Yu FL
    Carcinogenesis; 1980 Jul; 1(7):577-81. PubMed ID: 11219832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ex vivo characterization of XR5944 (MLN944) against a panel of human clinical tumor samples.
    Di Nicolantonio F; Knight LA; Whitehouse PA; Mercer SJ; Sharma S; Charlton PA; Norris D; Cree IA
    Mol Cancer Ther; 2004 Dec; 3(12):1631-7. PubMed ID: 15634657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actinomycin D inhibits human immunodeficiency virus type 1 minus-strand transfer in in vitro and endogenous reverse transcriptase assays.
    Guo J; Wu T; Bess J; Henderson LE; Levin JG
    J Virol; 1998 Aug; 72(8):6716-24. PubMed ID: 9658119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elongation by RNA polymerase II on chromatin templates requires topoisomerase activity.
    Mondal N; Zhang Y; Jonsson Z; Dhar SK; Kannapiran M; Parvin JD
    Nucleic Acids Res; 2003 Sep; 31(17):5016-24. PubMed ID: 12930951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cisplatin inhibits synthesis of ribosomal RNA in vivo.
    Jordan P; Carmo-Fonseca M
    Nucleic Acids Res; 1998 Jun; 26(12):2831-6. PubMed ID: 9611224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of anticancer drugs on transcription in vitro.
    WilmaƄska D; Czyz M; Studzian K; Piestrzeniewicz MK; Gniazdowski M
    Z Naturforsch C J Biosci; 2001; 56(9-10):886-91. PubMed ID: 11724400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selectivity of F8-actinomycin D for RNA:DNA hybrids and its anti-leukemia activity.
    Takusagawa F; Takusagawa KT; Carlson RG; Weaver RF
    Bioorg Med Chem; 1997 Jun; 5(6):1197-207. PubMed ID: 9222513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of the RNA polymerase II largest subunit during heat shock and inhibition of transcription in HeLa cells.
    Dubois MF; Bellier S; Seo SJ; Bensaude O
    J Cell Physiol; 1994 Mar; 158(3):417-26. PubMed ID: 8126066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-specific transactivators counteract topoisomerase II-mediated inhibition of in vitro transcription by RNA polymerases I and II.
    Brou C; Kuhn A; Staub A; Chaudhary S; Grummt I; Davidson I; Tora L
    Nucleic Acids Res; 1993 Aug; 21(17):4011-8. PubMed ID: 8396762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mithramycin selectively inhibits transcription of G-C containing DNA.
    Miller DM; Polansky DA; Thomas SD; Ray R; Campbell VW; Sanchez J; Koller CA
    Am J Med Sci; 1987 Nov; 294(5):388-94. PubMed ID: 2962490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of transcription and translation inhibitors on a human gastric carcinoma cell line. Potential role of Bcl-X(S) in apoptosis triggered by these inhibitors.
    Chang TC; Tsai LC; Hung MW; Chu LL; Chu JT; Chen YC
    Biochem Pharmacol; 1997 Apr; 53(7):969-77. PubMed ID: 9174110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol.
    Lam LT; Pickeral OK; Peng AC; Rosenwald A; Hurt EM; Giltnane JM; Averett LM; Zhao H; Davis RE; Sathyamoorthy M; Wahl LM; Harris ED; Mikovits JA; Monks AP; Hollingshead MG; Sausville EA; Staudt LM
    Genome Biol; 2001; 2(10):RESEARCH0041. PubMed ID: 11597333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.