These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 16093513)

  • 1. Extracellular stimulation in tissue engineering.
    Seliktar D
    Ann N Y Acad Sci; 2005 Jun; 1047():386-94. PubMed ID: 16093513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures.
    Almany L; Seliktar D
    Biomaterials; 2005 May; 26(15):2467-77. PubMed ID: 15585249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective.
    Hutmacher DW; Schantz JT; Lam CX; Tan KC; Lim TC
    J Tissue Eng Regen Med; 2007; 1(4):245-60. PubMed ID: 18038415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration.
    Dikovsky D; Bianco-Peled H; Seliktar D
    Biomaterials; 2006 Mar; 27(8):1496-506. PubMed ID: 16243393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun fibrinogen: feasibility as a tissue engineering scaffold in a rat cell culture model.
    McManus MC; Boland ED; Simpson DG; Barnes CP; Bowlin GL
    J Biomed Mater Res A; 2007 May; 81(2):299-309. PubMed ID: 17120217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomaterials and scaffold design: key to tissue-engineering cartilage.
    Raghunath J; Rollo J; Sales KM; Butler PE; Seifalian AM
    Biotechnol Appl Biochem; 2007 Feb; 46(Pt 2):73-84. PubMed ID: 17227284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of electrospun fibrinogen structures.
    McManus MC; Boland ED; Koo HP; Barnes CP; Pawlowski KJ; Wnek GE; Simpson DG; Bowlin GL
    Acta Biomater; 2006 Jan; 2(1):19-28. PubMed ID: 16701855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering.
    Rafat M; Li F; Fagerholm P; Lagali NS; Watsky MA; Munger R; Matsuura T; Griffith M
    Biomaterials; 2008 Oct; 29(29):3960-72. PubMed ID: 18639928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage.
    Moutos FT; Freed LE; Guilak F
    Nat Mater; 2007 Feb; 6(2):162-7. PubMed ID: 17237789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical stimulation of tissue engineered tendon constructs: effect of scaffold materials.
    Nirmalanandhan VS; Dressler MR; Shearn JT; Juncosa-Melvin N; Rao M; Gooch C; Bradica G; Butler DL
    J Biomech Eng; 2007 Dec; 129(6):919-23. PubMed ID: 18067397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Materials in particulate form for tissue engineering. 2. Applications in bone.
    Silva GA; Coutinho OP; Ducheyne P; Reis RL
    J Tissue Eng Regen Med; 2007; 1(2):97-109. PubMed ID: 18038398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of scaffold architecture and pore size on smooth muscle cell growth.
    Lee M; Wu BM; Dunn JC
    J Biomed Mater Res A; 2008 Dec; 87(4):1010-6. PubMed ID: 18257081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of endothelial cell phenotype by biomimetic matrix coated on biomaterials for cardiovascular tissue engineering.
    Prasad CK; Krishnan LK
    Acta Biomater; 2008 Jan; 4(1):182-91. PubMed ID: 17643359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous mechanical loading and confocal reflection microscopy for three-dimensional microbiomechanical analysis of biomaterials and tissue constructs.
    Voytik-Harbin SL; Roeder BA; Sturgis JE; Kokini K; Robinson JP
    Microsc Microanal; 2003 Feb; 9(1):74-85. PubMed ID: 12597789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds.
    Moroni L; Licht R; de Boer J; de Wijn JR; van Blitterswijk CA
    Biomaterials; 2006 Oct; 27(28):4911-22. PubMed ID: 16762409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macromolecular biomaterials for scaffold-based vascular tissue engineering.
    Couet F; Rajan N; Mantovani D
    Macromol Biosci; 2007 May; 7(5):701-18. PubMed ID: 17477449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable honeycomb collagen scaffold for dermal tissue engineering.
    George J; Onodera J; Miyata T
    J Biomed Mater Res A; 2008 Dec; 87(4):1103-11. PubMed ID: 18792951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of a natural collagen scaffold to aid cell-matrix penetration for urologic tissue engineering.
    Liu Y; Bharadwaj S; Lee SJ; Atala A; Zhang Y
    Biomaterials; 2009 Aug; 30(23-24):3865-73. PubMed ID: 19427687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microrobotics and MEMS-based fabrication techniques for scaffold-based tissue engineering.
    Zhang H; Hutmacher DW; Chollet F; Poo AN; Burdet E
    Macromol Biosci; 2005 Jun; 5(6):477-89. PubMed ID: 15968638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Customized PEG-derived copolymers for tissue-engineering applications.
    Tessmar JK; Göpferich AM
    Macromol Biosci; 2007 Jan; 7(1):23-39. PubMed ID: 17195277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.