These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 16094892)

  • 1. Lack of evidence for metallothionein role in tolerance to copper by natural populations of Daphnia longispina.
    Martins N; Lopes I; Guilhermino L; Bebianno MJ; Ribeiro R
    Bull Environ Contam Toxicol; 2005 Apr; 74(4):761-8. PubMed ID: 16094892
    [No Abstract]   [Full Text] [Related]  

  • 2. Cytochrome B gene partial sequence and RAPD analysis of two Daphnia longispina lineages differing in their resistance to copper.
    Martins N; Lopes I; Brehm A; Ribeiro R
    Bull Environ Contam Toxicol; 2005 Apr; 74(4):755-60. PubMed ID: 16094891
    [No Abstract]   [Full Text] [Related]  

  • 3. Genetic determination of tolerance to lethal and sublethal copper concentrations in field populations of Daphnia longispina.
    Lopes I; Baird DJ; Ribeiro R
    Arch Environ Contam Toxicol; 2004 Jan; 46(1):43-51. PubMed ID: 15025163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life-history consequences of adaptation to pollution. "Daphnia longispina clones historically exposed to copper".
    Agra AR; Soares AM; Barata C
    Ecotoxicology; 2011 May; 20(3):552-62. PubMed ID: 21380530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic costs of tolerance to metals in Daphnia longispina populations historically exposed to a copper mine drainage.
    Agra AR; Guilhermino L; Soares AM; Barata C
    Environ Toxicol Chem; 2010 Apr; 29(4):939-46. PubMed ID: 20821524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic adaptation to metal stress by natural populations of Daphnia longispina.
    Lopes I; Baird DJ; Ribeiro R
    Ecotoxicol Environ Saf; 2006 Feb; 63(2):275-85. PubMed ID: 16677911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Among- and within-population variability in tolerance to cadmium stress in natural populations of Daphnia magna: implications for ecological risk assessment.
    Barata C; Baird DJ; Mitchell SE; Soares AM
    Environ Toxicol Chem; 2002 May; 21(5):1058-64. PubMed ID: 12013128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multigeneration zinc acclimation and tolerance in Daphnia magna: implications for water-quality guidelines and ecological risk assessment.
    Muyssen BT; Janssen CR
    Environ Toxicol Chem; 2001 Sep; 20(9):2053-60. PubMed ID: 11521834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contaminant driven genetic erosion: a case study with Daphnia longispina.
    Ribeiro R; Baird DJ; Soares AM; Lopes I
    Environ Toxicol Chem; 2012 May; 31(5):977-82. PubMed ID: 22407826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multigeneration acclimation of Daphnia magna Straus to different bioavailable copper concentrations.
    Bossuyt BT; Escobar YR; Janssen CR
    Ecotoxicol Environ Saf; 2005 Jul; 61(3):327-36. PubMed ID: 15922798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation in transcriptional responses to copper exposure across Daphnia pulex lineages.
    Chain FJJ; Finlayson S; Crease T; Cristescu M
    Aquat Toxicol; 2019 May; 210():85-97. PubMed ID: 30836324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multigenerational effects of salinity in six clonal lineages of Daphnia longispina.
    Venâncio C; Ribeiro R; Soares AMVM; Lopes I
    Sci Total Environ; 2018 Apr; 619-620():194-202. PubMed ID: 29149743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The heat is on: Genetic adaptation to urbanization mediated by thermal tolerance and body size.
    Brans KI; Jansen M; Vanoverbeke J; Tüzün N; Stoks R; De Meester L
    Glob Chang Biol; 2017 Dec; 23(12):5218-5227. PubMed ID: 28614592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maladaptation to Acute Metal Exposure in Resurrected Daphnia ambigua Clones after Decades of Increasing Contamination.
    Rogalski MA
    Am Nat; 2017 Apr; 189(4):443-452. PubMed ID: 28350505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper tolerance and accumulation potential of Chlamydomonas reinhardtii.
    Boswell C; Sharma NC; Sahi SV
    Bull Environ Contam Toxicol; 2002 Oct; 69(4):546-53. PubMed ID: 12232726
    [No Abstract]   [Full Text] [Related]  

  • 16. Determining genetic variability in the distribution of sensitivities to toxic stress among and within field populations of Daphnia magna.
    Barata C; Baird DJ; Soares AM
    Environ Sci Technol; 2002 Jul; 36(14):3045-9. PubMed ID: 12141480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of acid mine drainage on the genetic diversity and structure of a natural population of Daphnia longispina.
    Martins N; Bollinger C; Harper RM; Ribeiro R
    Aquat Toxicol; 2009 Apr; 92(2):104-12. PubMed ID: 19230987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modes and mechanisms of a Daphnia invasion.
    Spaak P; Fox J; Hairston NG
    Proc Biol Sci; 2012 Aug; 279(1740):2936-44. PubMed ID: 22513861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acclimation of the freshwater crustacean Daphnia magna to copper: changes in tolerance and energy allocation.
    Bossuyt BT; Janssen CR
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(4):191-5. PubMed ID: 15954288
    [No Abstract]   [Full Text] [Related]  

  • 20. Extensive standing genetic variation from a small number of founders enables rapid adaptation in Daphnia.
    Chaturvedi A; Zhou J; Raeymaekers JAM; Czypionka T; Orsini L; Jackson CE; Spanier KI; Shaw JR; Colbourne JK; De Meester L
    Nat Commun; 2021 Jul; 12(1):4306. PubMed ID: 34262034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.