These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16094967)

  • 1. Insensitivity of D-amino acid dehydrogenase synthesis to catabolic repression in dadR mutants of Salmonella typhimurium.
    Wild J; Kłopotowski T
    Mol Gen Genet; 1975; 136(1):63-73. PubMed ID: 16094967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of D-amino acids by dadR mutants of Salmonella typhimurium.
    Wild J; Filutowicz M; Kłopotowski T
    Arch Microbiol; 1978 Jul; 118(1):71-7. PubMed ID: 29590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organization and expression of the Escherichia coli K-12 dad operon encoding the smaller subunit of D-amino acid dehydrogenase and the catabolic alanine racemase.
    Lobocka M; Hennig J; Wild J; Kłopotowski T
    J Bacteriol; 1994 Mar; 176(5):1500-10. PubMed ID: 7906689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-Amino acid dehydrogenase of Escherichia coli K12: positive selection of mutants defective in enzyme activity and localization of the structural gene.
    Wild J; Klopotowski T
    Mol Gen Genet; 1981; 181(3):373-8. PubMed ID: 6113535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. D-amino acid dehydrogenase: the enzyme of the first step of D-histidine and D-methionine racemization in Salmonella typhimurium.
    Wild J; Walczak W; Krajewska-Grynkiewicz K; Klopotowski T
    Mol Gen Genet; 1974; 128(2):131-46. PubMed ID: 4150767
    [No Abstract]   [Full Text] [Related]  

  • 6. Two distinct types of mutations conferring to Escherichia coli K12 capability of D-tryptophan utilization.
    Wild J; Zakrzewska B; Walczak W; Kłopotowski T
    Acta Microbiol Pol; 1987; 36(1-2):17-28. PubMed ID: 2442969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation and characterization of the dadRAX locus for D-amino acid catabolism in Pseudomonas aeruginosa PAO1.
    He W; Li C; Lu CD
    J Bacteriol; 2011 May; 193(9):2107-15. PubMed ID: 21378189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of D-tryptophan oxidase in D-tryptophan utilization by Escherichia coli.
    Hadar R; Slonim A; Kuhn J
    J Bacteriol; 1976 Mar; 125(3):1096-1104. PubMed ID: 3493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutants of Salmonella typhimurium that are insensitive to catabolite repression of proline degradation.
    Newell SL; Brill WJ
    J Bacteriol; 1972 Aug; 111(2):375-82. PubMed ID: 4559730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alanine catabolism in Klebsiella aerogenes: molecular characterization of the dadAB operon and its regulation by the nitrogen assimilation control protein.
    Janes BK; Bender RA
    J Bacteriol; 1998 Feb; 180(3):563-70. PubMed ID: 9457858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the dadX gene coding for the predominant isozyme of alanine racemase in Escherichia coli K12.
    Wild J; Hennig J; Lobocka M; Walczak W; Kłopotowski T
    Mol Gen Genet; 1985; 198(2):315-22. PubMed ID: 3920477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two alanine racemase genes in Salmonella typhimurium that differ in structure and function.
    Wasserman SA; Walsh CT; Botstein D
    J Bacteriol; 1983 Mar; 153(3):1439-50. PubMed ID: 6298185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of proline utilization in Salmonella typhimurium: characterization of put::Mu d(Ap, lac) operon fusions.
    Maloy SR; Roth JR
    J Bacteriol; 1983 May; 154(2):561-8. PubMed ID: 6302076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sugar transport. The crr mutation: its effect on repression of enzyme synthesis.
    Saier MH; Roseman S
    J Biol Chem; 1976 Nov; 251(21):6598-605. PubMed ID: 789369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of derepression of the tryptophan operon of Escherichia coli and Salmonella typhimurium under different culture conditions.
    Mosteller RD; Mandula BB
    J Mol Biol; 1973 Nov; 80(4):801-23. PubMed ID: 4589650
    [No Abstract]   [Full Text] [Related]  

  • 16. Regulation of expression of the dadA gene encoding D-amino acid dehydrogenase in Escherichia coli: analysis of dadA-lac fusions and direction of dadA transcription.
    Wild J; Obrepalska B
    Mol Gen Genet; 1982; 186(3):405-10. PubMed ID: 6126797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. D-histidine utilization in Salmonella typhimurium is controlled by the leucine-responsive regulatory protein (Lrp).
    Hecht K; Zhang S; Klopotowski T; Ames GF
    J Bacteriol; 1996 Jan; 178(2):327-31. PubMed ID: 8550449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium.
    Feldheim DA; Chin AM; Nierva CT; Feucht BU; Cao YW; Xu YF; Sutrina SL; Saier MH
    J Bacteriol; 1990 Sep; 172(9):5459-69. PubMed ID: 2203752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription of the hut operons of Salmonella typhimurium.
    Cooper TG; Tyler B
    J Bacteriol; 1977 Apr; 130(1):192-9. PubMed ID: 192711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of Salmonella typhimurium glyoxylate shunt mutants.
    Wilson RB; Maloy SR
    J Bacteriol; 1987 Jul; 169(7):3029-34. PubMed ID: 3298210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.