BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 160950)

  • 1. Identification of transfer RNA suppressors in Escherichia coli. II. Duplicate genes for tRNA2Gln.
    Inokuchi H; Kodaira M; Yamao F; Ozeki H
    J Mol Biol; 1979 Aug; 132(4):663-77. PubMed ID: 160950
    [No Abstract]   [Full Text] [Related]  

  • 2. Identification of transfer RNA suppressors in Escherichia coli. I. Amber suppressor su+2, an anticodon mutant of tRNA2Gln.
    Inokuchi H; Yamao F; Sakano H; Ozeki H
    J Mol Biol; 1979 Aug; 132(4):649-62. PubMed ID: 160949
    [No Abstract]   [Full Text] [Related]  

  • 3. Identification of transfer RNA suppressors in Escherichia coli. III. Ochre suppressors of lysine tRNA.
    Yoshimura M; Kimura M; Ohno M; Inokuchi H; Ozeki H
    J Mol Biol; 1984 Aug; 177(4):609-25. PubMed ID: 6207301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of transfer RNA suppressors in Escherichia coli. IV. Amber suppressor Su+6 a double mutant of a new species of leucine tRNA.
    Yoshimura M; Inokuchi H; Ozeki H
    J Mol Biol; 1984 Aug; 177(4):627-44. PubMed ID: 6207302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of Escherichia coli amber suppressor tRNA genes. III. Determination of tRNA specificity.
    Normanly J; Kleina LG; Masson JM; Abelson J; Miller JH
    J Mol Biol; 1990 Jun; 213(4):719-26. PubMed ID: 2141650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetics of transfer RNA processing in Escherichia coli.
    Shimura Y; Shiraishi H
    Methods Enzymol; 1990; 181():395-400. PubMed ID: 2143258
    [No Abstract]   [Full Text] [Related]  

  • 7. Isolation and characterization of antisuppressor mutations in Escherichia coli.
    Sullivan MA; Bock RM
    J Bacteriol; 1985 Jan; 161(1):377-84. PubMed ID: 3918006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Search for revertants of the glutamine mischarging mutans of Escherichia coli su+3 tyrosine suppressor tRNA that are able to insert tyrosine at the site of amber mutation.
    Celis JE; Squire M; Kaltoft K; Riisom E
    Nucleic Acids Res; 1977 Aug; 4(8):2799-809. PubMed ID: 410001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro transcription from the b2 region of bacteriophage lambda.
    Rosenvold EC; Calva E; Burgess RR; Szybalski W
    Virology; 1980 Dec; 107(2):476-87. PubMed ID: 6450480
    [No Abstract]   [Full Text] [Related]  

  • 10. Processing of bacteriophage T4 transfer RNAs. Structural analysis and in vitro processing of precursors that accumulate in RNase E-strains.
    Pragai B; Apirion D
    J Mol Biol; 1982 Jan; 154(3):465-84. PubMed ID: 7042984
    [No Abstract]   [Full Text] [Related]  

  • 11. Organization and structure of an E. coli tRNA operon containing seven tRNA genes.
    Nakajima N; Ozeki H; Shimura Y
    Cell; 1981 Jan; 23(1):239-49. PubMed ID: 6163550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of ultraviolet light-induced suppressor mutations in the strain of Escherichia coli K-12 AB1157: an implication for molecular mechanisms of UV mutagenesis.
    Kato T; Shinoura Y; Templin A; Clark AJ
    Mol Gen Genet; 1980; 180(2):283-91. PubMed ID: 6450870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The secondary attachment site for bacteriophage lambda in the proA/B gene of Escherichia coli.
    Pinkham JL; Platt T; Enquist LW; Weisberg RA
    J Mol Biol; 1980 Dec; 144(4):587-92. PubMed ID: 6454790
    [No Abstract]   [Full Text] [Related]  

  • 14. Differential effects of mutations in the protein and RNA moieties of RNase P on the efficiency of suppression by various tRNA suppressors.
    Kirsebom LA; Baer MF; Altman S
    J Mol Biol; 1988 Dec; 204(4):879-88. PubMed ID: 2464697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of Escherichia coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and improvement of suppressor efficiency.
    Kleina LG; Masson JM; Normanly J; Abelson J; Miller JH
    J Mol Biol; 1990 Jun; 213(4):705-17. PubMed ID: 2193162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corrections in the catalogue of oliogonucleotides produced by digestion of Escherichia coli 16S rRNA with T1 RNase.
    Magrum L; Zablen L; Stahl D; Woese C
    Nature; 1975 Oct; 257(5525):423-6. PubMed ID: 809718
    [No Abstract]   [Full Text] [Related]  

  • 17. Enhanced recombination between lambda plac5 and F42lac: identification of cis- and trans-acting factors.
    Seifert HS; Porter RD
    Proc Natl Acad Sci U S A; 1984 Dec; 81(23):7500-4. PubMed ID: 6095300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Escherichia coli ribonuclease which removes an extra nucleotide from a biosynthetic intermediate of bacteriophage T4 proline transfer RNA.
    Schmidt FJ; McClain WH
    Nucleic Acids Res; 1978 Nov; 5(11):4129-39. PubMed ID: 364422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The phage lambda orf gene encodes a trans-acting factor that suppresses Escherichia coli recO, recR, and recF mutations for recombination of lambda but not of E. coli.
    Sawitzke JA; Stahl FW
    J Bacteriol; 1994 Nov; 176(21):6730-7. PubMed ID: 7961426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of RNA molecules which contain 5 S ribosomal RNA and transfer RNA in an RNAase E-RNAase P- double mutant strain of Escherichia coli.
    Ray BK; Aprifion D
    J Mol Biol; 1980 May; 139(3):329-48. PubMed ID: 6160249
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.