BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 16095340)

  • 1. Quasirelativistic theory for the magnetic shielding constant. III. Quasirelativistic second-order Møller-Plesset perturbation theory and its application to tellurium compounds.
    Fukuda R; Nakatsuji H
    J Chem Phys; 2005 Jul; 123(4):044101. PubMed ID: 16095340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical predictions of nuclear magnetic resonance parameters in a novel organo-xenon species: chemical shifts and nuclear quadrupole couplings in HXeCCH.
    Straka M; Lantto P; Räsänen M; Vaara J
    J Chem Phys; 2007 Dec; 127(23):234314. PubMed ID: 18154389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative prediction of gas-phase (15)N and (31)P nuclear magnetic shielding constants.
    Prochnow E; Auer AA
    J Chem Phys; 2010 Feb; 132(6):064109. PubMed ID: 20151735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. (129)Xe chemical shift by the perturbational relativistic method: xenon fluorides.
    Lantto P; Vaara J
    J Chem Phys; 2007 Aug; 127(8):084312. PubMed ID: 17764253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
    Lantto P; Romero RH; Gómez SS; Aucar GA; Vaara J
    J Chem Phys; 2006 Nov; 125(18):184113. PubMed ID: 17115744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and computational characterization of the 17O quadrupole coupling and magnetic shielding tensors for p-nitrobenzaldehyde and formaldehyde.
    Wu G; Mason P; Mo X; Terskikh V
    J Phys Chem A; 2008 Feb; 112(5):1024-32. PubMed ID: 18193848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QM/MM calculation of protein magnetic shielding tensors with generalized hybrid-orbital method: a GIAO approach.
    Akinaga Y; Jung J; Ten-no S
    Phys Chem Chem Phys; 2011 Aug; 13(32):14490-9. PubMed ID: 21761071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical investigation on 1H and 13C NMR chemical shifts of small alkanes and chloroalkanes.
    d'Antuono P; Botek E; Champagne B; Spassova M; Denkova P
    J Chem Phys; 2006 Oct; 125(14):144309. PubMed ID: 17042592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Second-order Møller-Plesset perturbation energy obtained from divide-and-conquer Hartree-Fock density matrix.
    Kobayashi M; Akama T; Nakai H
    J Chem Phys; 2006 Nov; 125(20):204106. PubMed ID: 17144689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy and limitations of second-order many-body perturbation theory for predicting vertical detachment energies of solvated-electron clusters.
    Herbert JM; Head-Gordon M
    Phys Chem Chem Phys; 2006 Jan; 8(1):68-78. PubMed ID: 16482246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Gaussian-type geminals in local second-order Møller-Plesset perturbation theory.
    Polly R; Werner HJ; Dahle P; Taylor PR
    J Chem Phys; 2006 Jun; 124(23):234107. PubMed ID: 16821907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy density analysis for second-order Møller-Plesset perturbation theory and coupled-cluster theory with singles and doubles: application to C2H4--CH4 complexes.
    Imamura Y; Nakai H
    J Comput Chem; 2008 Jul; 29(10):1555-63. PubMed ID: 18432621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.
    Hanni M; Lantto P; Ilias M; Jensen HJ; Vaara J
    J Chem Phys; 2007 Oct; 127(16):164313. PubMed ID: 17979344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relativistic and electron-correlation effects on magnetizabilities investigated by the Douglas-Kroll-Hess method and the second-order Møller-Plesset perturbation theory.
    Yoshizawa T; Hada M
    J Comput Chem; 2009 Nov; 30(15):2550-66. PubMed ID: 19373837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR shielding as a probe of intermolecular interactions: ab initio and density functional theory studies.
    Platts JA; Gkionis K
    Phys Chem Chem Phys; 2009 Nov; 11(44):10331-9. PubMed ID: 19890517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why benchmark-quality computations are needed to reproduce 1-adamantyl cation NMR chemical shifts accurately.
    Harding ME; Gauss J; Schleyer Pv
    J Phys Chem A; 2011 Mar; 115(11):2340-4. PubMed ID: 21361308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Second-order Møller-Plesset perturbation theory applied to extended systems. I. Within the projector-augmented-wave formalism using a plane wave basis set.
    Marsman M; Grüneis A; Paier J; Kresse G
    J Chem Phys; 2009 May; 130(18):184103. PubMed ID: 19449904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hole localization in [AlO4]0 defects in silica materials.
    To J; Sokol AA; French SA; Kaltsoyannis N; Catlow CR
    J Chem Phys; 2005 Apr; 122(14):144704. PubMed ID: 15847550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zeroth order regular approximation approach to parity violating nuclear magnetic resonance shielding tensors.
    Nahrwold S; Berger R
    J Chem Phys; 2009 Jun; 130(21):214101. PubMed ID: 19508050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.