These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A density matrix-based method for the linear-scaling calculation of dynamic second- and third-order properties at the Hartree-Fock and Kohn-Sham density functional theory levels. Kussmann J; Ochsenfeld C J Chem Phys; 2007 Nov; 127(20):204103. PubMed ID: 18052415 [TBL] [Abstract][Full Text] [Related]
4. Linear scaling density matrix perturbation theory for basis-set-dependent quantum response calculations: an orthogonal formulation. Niklasson AM; Weber V J Chem Phys; 2007 Aug; 127(6):064105. PubMed ID: 17705586 [TBL] [Abstract][Full Text] [Related]
5. Ab initio linear scaling response theory: electric polarizability by perturbed projection. Weber V; Niklasson AM; Challacombe M Phys Rev Lett; 2004 May; 92(19):193002. PubMed ID: 15169399 [TBL] [Abstract][Full Text] [Related]
6. Canonical density matrix perturbation theory. Niklasson AM; Cawkwell MJ; Rubensson EH; Rudberg E Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063301. PubMed ID: 26764847 [TBL] [Abstract][Full Text] [Related]
7. A density matrix-based quasienergy formulation of the Kohn-Sham density functional response theory using perturbation- and time-dependent basis sets. Thorvaldsen AJ; Ruud K; Kristensen K; Jørgensen P; Coriani S J Chem Phys; 2008 Dec; 129(21):214108. PubMed ID: 19063545 [TBL] [Abstract][Full Text] [Related]
9. Analytic calculations of vibrational hyperpolarizabilities in the atomic orbital basis. Thorvaldsen AJ; Ruud K; Jaszuński M J Phys Chem A; 2008 Nov; 112(46):11942-50. PubMed ID: 18947217 [TBL] [Abstract][Full Text] [Related]
10. Efficient linear-scaling calculation of response properties: density matrix-based Laplace-transformed coupled-perturbed self-consistent field theory. Beer M; Ochsenfeld C J Chem Phys; 2008 Jun; 128(22):221102. PubMed ID: 18553999 [TBL] [Abstract][Full Text] [Related]
11. Coupled-perturbed density-matrix functional theory equations. Application to static polarizabilities. Pernal K; Baerends EJ J Chem Phys; 2006 Jan; 124(1):14102. PubMed ID: 16409019 [TBL] [Abstract][Full Text] [Related]
12. Linear scaling computation of the Fock matrix. VII. Periodic density functional theory at the Gamma point. Tymczak CJ; Challacombe M J Chem Phys; 2005 Apr; 122(13):134102. PubMed ID: 15847450 [TBL] [Abstract][Full Text] [Related]
13. Higher-order symplectic integration in Born-Oppenheimer molecular dynamics. Odell A; Delin A; Johansson B; Bock N; Challacombe M; Niklasson AM J Chem Phys; 2009 Dec; 131(24):244106. PubMed ID: 20059053 [TBL] [Abstract][Full Text] [Related]
14. Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory. Kussmann J; Ochsenfeld C J Chem Phys; 2007 Aug; 127(5):054103. PubMed ID: 17688330 [TBL] [Abstract][Full Text] [Related]
15. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory. Coriani S; Høst S; Jansík B; Thøgersen L; Olsen J; Jørgensen P; Reine S; Pawłowski F; Helgaker T; Sałek P J Chem Phys; 2007 Apr; 126(15):154108. PubMed ID: 17461615 [TBL] [Abstract][Full Text] [Related]
16. Linear scaling computation of the Fock matrix. VIII. Periodic boundaries for exact exchange at the Gamma point. Tymczak CJ; Weber VT; Schwegler E; Challacombe M J Chem Phys; 2005 Mar; 122(12):124105. PubMed ID: 15836367 [TBL] [Abstract][Full Text] [Related]
17. Trace correcting density matrix extrapolation in self-consistent geometry optimization. Niklasson AM; Challacombe M; Tymczak CJ; Németh K J Chem Phys; 2010 Mar; 132(12):124104. PubMed ID: 20370111 [TBL] [Abstract][Full Text] [Related]
19. Dynamic hyperpolarizability calculations of large systems: the linear-scaling divide-and-conquer approach. Kobayashi M; Touma T; Nakai H J Chem Phys; 2012 Feb; 136(8):084108. PubMed ID: 22380033 [TBL] [Abstract][Full Text] [Related]
20. Calculation of first and second static hyperpolarizabilities of one- to three-dimensional periodic compounds. Implementation in the CRYSTAL code. Ferrero M; Rérat M; Kirtman B; Dovesi R J Chem Phys; 2008 Dec; 129(24):244110. PubMed ID: 19123498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]