BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 16095606)

  • 1. Site-saturation mutagenesis is more efficient than DNA shuffling for the directed evolution of beta-fucosidase from beta-galactosidase.
    Parikh MR; Matsumura I
    J Mol Biol; 2005 Sep; 352(3):621-8. PubMed ID: 16095606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening.
    Zhang JH; Dawes G; Stemmer WP
    Proc Natl Acad Sci U S A; 1997 Apr; 94(9):4504-9. PubMed ID: 9114019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution of beta-galactosidase from Escherichia coli into beta-glucuronidase.
    Xiong AS; Peng RH; Zhuang J; Liu JG; Xu F; Cai B; Guo ZK; Qiao YS; Chen JM; Zhang Z; Yao QH
    J Biochem Mol Biol; 2007 May; 40(3):419-25. PubMed ID: 17562294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. beta-D-Galactosidase from Paenibacillus thiaminolyticus catalyzing transfucosylation reactions.
    Benesová E; Lipovová P; Dvoráková H; Králová B
    Glycobiology; 2010 Jan; 20(4):442-51. PubMed ID: 20008517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro evolution of beta-glucuronidase into a beta-galactosidase proceeds through non-specific intermediates.
    Matsumura I; Ellington AD
    J Mol Biol; 2001 Jan; 305(2):331-9. PubMed ID: 11124909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed evolution of the alpha-L-fucosidase from Thermotoga maritima into an alpha-L-transfucosidase.
    Osanjo G; Dion M; Drone J; Solleux C; Tran V; Rabiller C; Tellier C
    Biochemistry; 2007 Jan; 46(4):1022-33. PubMed ID: 17240986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exchange of active site residues alters substrate specificity in extremely thermostable β-glycosidase from Thermococcus kodakarensis KOD1.
    Hwa KY; Subramani B; Shen ST; Lee YM
    Enzyme Microb Technol; 2015 Sep; 77():14-20. PubMed ID: 26138395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole plasmid mutagenic PCR for directed protein evolution.
    Matsumura I; Rowe LA
    Biomol Eng; 2005 Jun; 22(1-3):73-9. PubMed ID: 15857786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed evolution relieves product inhibition and confers in vivo function to a rationally designed tyrosine aminotransferase.
    Rothman SC; Voorhies M; Kirsch JF
    Protein Sci; 2004 Mar; 13(3):763-72. PubMed ID: 14767072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of essential residues of human alpha-L-fucosidase and tests of its mechanism.
    Liu SW; Chen CS; Chang SS; Mong KK; Lin CH; Chang CW; Tang CY; Li YK
    Biochemistry; 2009 Jan; 48(1):110-20. PubMed ID: 19072333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid evolution of beta-glucuronidase specificity by saturation mutagenesis of an active site loop.
    Geddie ML; Matsumura I
    J Biol Chem; 2004 Jun; 279(25):26462-8. PubMed ID: 15069062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of directed evolution approaches using the beta-glucuronidase model system.
    Rowe LA; Geddie ML; Alexander OB; Matsumura I
    J Mol Biol; 2003 Sep; 332(4):851-60. PubMed ID: 12972256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed evolution of a family 26 glycoside hydrolase: endo-β-1, 4-mannanase from Pantoea agglomerans A021.
    Wang J; Zhang Q; Huang Z; Liu Z
    J Biotechnol; 2013 Sep; 167(3):350-6. PubMed ID: 23835158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A semi-rational design strategy of directed evolution combined with chemical synthesis of DNA sequences.
    Xiong AS; Peng RH; Zhuang J; Liu JG; Gao F; Xu F; Cai B; Yao QH
    Biol Chem; 2007 Dec; 388(12):1291-300. PubMed ID: 18020945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed evolution of (βα)(8)-barrel enzymes: establishing phosphoribosylanthranilate isomerisation activity on the scaffold of the tryptophan synthase α-subunit.
    Evran S; Telefoncu A; Sterner R
    Protein Eng Des Sel; 2012 Jun; 25(6):285-93. PubMed ID: 22490958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in the substrate specificities and active-site structures of two α-L-fucosidases (glycoside hydrolase family 29) from Bacteroides thetaiotaomicron.
    Sakurama H; Tsutsumi E; Ashida H; Katayama T; Yamamoto K; Kumagai H
    Biosci Biotechnol Biochem; 2012; 76(5):1022-4. PubMed ID: 22738979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transglycosylating β-d-galactosidase and α-l-fucosidase from Paenibacillus sp. 3179 from a hot spring in East Greenland.
    Thøgersen MS; Christensen SJ; Jepsen M; Pedersen LH; Stougaard P
    Microbiologyopen; 2020 Mar; 9(3):e980. PubMed ID: 31868312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. beta-Glycosyl azides as substrates for alpha-glycosynthases: preparation of efficient alpha-L-fucosynthases.
    Cobucci-Ponzano B; Conte F; Bedini E; Corsaro MM; Parrilli M; Sulzenbacher G; Lipski A; Dal Piaz F; Lepore L; Rossi M; Moracci M
    Chem Biol; 2009 Oct; 16(10):1097-108. PubMed ID: 19875083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pooling for improved screening of combinatorial libraries for directed evolution.
    Polizzi KM; Parikh M; Spencer CU; Matsumura I; Lee JH; Realff MJ; Bommarius AS
    Biotechnol Prog; 2006; 22(4):961-7. PubMed ID: 16889370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversification and specialization of HIV protease function during in vitro evolution.
    O'Loughlin TL; Greene DN; Matsumura I
    Mol Biol Evol; 2006 Apr; 23(4):764-72. PubMed ID: 16423863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.