These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16095715)

  • 1. Marking multi-channel silicon-substrate electrode recording sites using radiofrequency lesions.
    Brozoski TJ; Caspary DM; Bauer CA
    J Neurosci Methods; 2006 Jan; 150(2):185-91. PubMed ID: 16095715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penetrating multichannel stimulation and recording electrodes in auditory prosthesis research.
    Anderson DJ
    Hear Res; 2008 Aug; 242(1-2):31-41. PubMed ID: 18343062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording.
    Blanche TJ; Spacek MA; Hetke JF; Swindale NV
    J Neurophysiol; 2005 May; 93(5):2987-3000. PubMed ID: 15548620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Massively parallel recording of unit and local field potentials with silicon-based electrodes.
    Csicsvari J; Henze DA; Jamieson B; Harris KD; Sirota A; Barthó P; Wise KD; Buzsáki G
    J Neurophysiol; 2003 Aug; 90(2):1314-23. PubMed ID: 12904510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recording and marking with silicon multichannel electrodes.
    Townsend G; Peloquin P; Kloosterman F; Hetke JF; Leung LS
    Brain Res Brain Res Protoc; 2002 Apr; 9(2):122-9. PubMed ID: 12034331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling limitations of silicon multichannel recording probes.
    Najafi K; Ji J; Wise KD
    IEEE Trans Biomed Eng; 1990 Jan; 37(1):1-11. PubMed ID: 2303265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new multi-electrode array design for chronic neural recording, with independent and automatic hydraulic positioning.
    Sato T; Suzuki T; Mabuchi K
    J Neurosci Methods; 2007 Feb; 160(1):45-51. PubMed ID: 16996616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferior colliculus responses to multichannel microstimulation of the ventral cochlear nucleus: implications for auditory brain stem implants.
    Shivdasani MN; Mauger SJ; Rathbone GD; Paolini AG
    J Neurophysiol; 2008 Jan; 99(1):1-13. PubMed ID: 17928560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel high channel-count system for acute multisite neuronal recordings.
    Hofmann UG; Folkers A; Mösch F; Malina T; Menne KM; Biella G; Fagerstedt P; De Schutter E; Jensen W; Yoshida K; Hoehl D; Thomas U; Kindlundh MG; Norlin P; de Curtis M
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1672-7. PubMed ID: 16916102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation of a miniature sized, battery powered electrophysiological signal-generator for testing multi-channel recording equipments.
    Máthé K; Tóth A; Petykó Z; Szabó I; Czurkó A
    J Neurosci Methods; 2007 Sep; 165(1):1-8. PubMed ID: 17624440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Custom-designed high-density conformal planar multielectrode arrays for brain slice electrophysiology.
    Gholmieh G; Soussou W; Han M; Ahuja A; Hsiao MC; Song D; Tanguay AR; Berger TW
    J Neurosci Methods; 2006 Apr; 152(1-2):116-29. PubMed ID: 16289315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain.
    Chen YY; Lai HY; Lin SH; Cho CW; Chao WH; Liao CH; Tsang S; Chen YF; Lin SY
    J Neurosci Methods; 2009 Aug; 182(1):6-16. PubMed ID: 19467262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible polyimide microelectrode array for in vivo recordings and current source density analysis.
    Cheung KC; Renaud P; Tanila H; Djupsund K
    Biosens Bioelectron; 2007 Mar; 22(8):1783-90. PubMed ID: 17027251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marking microelectrode penetrations with fluorescent dyes.
    DiCarlo JJ; Lane JW; Hsiao SS; Johnson KO
    J Neurosci Methods; 1996 Jan; 64(1):75-81. PubMed ID: 8869487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A floating metal microelectrode array for chronic implantation.
    Musallam S; Bak MJ; Troyk PR; Andersen RA
    J Neurosci Methods; 2007 Feb; 160(1):122-7. PubMed ID: 17067683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting neural recording performance of implantable electrodes.
    Harris AR; Allitt BJ; Paolini AG
    Analyst; 2019 Apr; 144(9):2973-2983. PubMed ID: 30888346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of multisite silicon microprobes implanted chronically in the ventral cochlear nucleus of the cat.
    McCreery D; Lossinsky A; Pikov V
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1042-52. PubMed ID: 17554823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action potential recording from dielectrophoretically positioned neurons inside micro-wells of a planar microelectrode array.
    Jaber FT; Labeed FH; Hughes MP
    J Neurosci Methods; 2009 Sep; 182(2):225-35. PubMed ID: 19540265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal pH dynamics following insertion of neural microelectrode arrays.
    Johnson MD; Kao OE; Kipke DR
    J Neurosci Methods; 2007 Mar; 160(2):276-87. PubMed ID: 17084461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.