BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 16095718)

  • 1. Matching geometry and stimulation parameters of electrodes for deep brain stimulation experiments--numerical considerations.
    Gimsa U; Schreiber U; Habel B; Flehr J; van Rienen U; Gimsa J
    J Neurosci Methods; 2006 Jan; 150(2):212-27. PubMed ID: 16095718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Choosing electrodes for deep brain stimulation experiments--electrochemical considerations.
    Gimsa J; Habel B; Schreiber U; van Rienen U; Strauss U; Gimsa U
    J Neurosci Methods; 2005 Mar; 142(2):251-65. PubMed ID: 15698665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric field distribution in a finite-volume head model of deep brain stimulation.
    Grant PF; Lowery MM
    Med Eng Phys; 2009 Nov; 31(9):1095-103. PubMed ID: 19656716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite-element modeling of needle electrodes in tissue from the perspective of frequent model computation.
    Sel D; Mazeres S; Teissie J; Miklavcic D
    IEEE Trans Biomed Eng; 2003 Nov; 50(11):1221-32. PubMed ID: 14619992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Empirical study of unipolar and bipolar configurations using high resolution single multi-walled carbon nanotube electrodes for electrophysiological probing of electrically excitable cells.
    de Asis ED; Leung J; Wood S; Nguyen CV
    Nanotechnology; 2010 Mar; 21(12):125101. PubMed ID: 20182008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the field distribution in deep brain stimulation: the influence of anisotropy of brain tissue.
    Schmidt C; van Rienen U
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1583-92. PubMed ID: 22410323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording.
    Lai HY; Liao LD; Lin CT; Hsu JH; He X; Chen YY; Chang JY; Chen HF; Tsang S; Shih YY
    J Neural Eng; 2012 Jun; 9(3):036001. PubMed ID: 22488106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microelectrode array for chronic deep-brain microstimulation and recording.
    McCreery D; Lossinsky A; Pikov V; Liu X
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):726-37. PubMed ID: 16602580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multielectrode microprobes for deep-brain stimulation fabricated with a customizable 3-D electroplating process.
    Motta PS; Judy JW
    IEEE Trans Biomed Eng; 2005 May; 52(5):923-33. PubMed ID: 15887542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic field perturbation of neural recording and stimulating microelectrodes.
    Martinez-Santiesteban FM; Swanson SD; Noll DC; Anderson DJ
    Phys Med Biol; 2007 Apr; 52(8):2073-88. PubMed ID: 17404456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy.
    Miranda PC; Hallett M; Basser PJ
    IEEE Trans Biomed Eng; 2003 Sep; 50(9):1074-85. PubMed ID: 12943275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human central nervous system circuits examined through the electrodes implanted for deep brain stimulation.
    Valls-Solé J; Compta Y; Costa J; Valldeoriola F; Rumià J
    Clin Neurophysiol; 2008 Jun; 119(6):1219-31. PubMed ID: 18308626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of stimulus parameters for deep brain stimulation.
    Kuncel AM; Grill WM
    Clin Neurophysiol; 2004 Nov; 115(11):2431-41. PubMed ID: 15465430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy and distortion of deep brain stimulation electrodes on postoperative MRI and CT.
    Pinsker MO; Herzog J; Falk D; Volkmann J; Deuschl G; Mehdorn M
    Zentralbl Neurochir; 2008 Aug; 69(3):144-7. PubMed ID: 18666049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic current density of the disk electrode double-layer.
    Behrend MR; Ahuja AK; Weiland JD
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1056-62. PubMed ID: 18334397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of electrode design on the volume of tissue activated during deep brain stimulation.
    Butson CR; McIntyre CC
    J Neural Eng; 2006 Mar; 3(1):1-8. PubMed ID: 16510937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the current distribution during transcranial direct current stimulation.
    Miranda PC; Lomarev M; Hallett M
    Clin Neurophysiol; 2006 Jul; 117(7):1623-9. PubMed ID: 16762592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling parkinsonian circuitry and the DBS electrode. II. Evaluation of a computer simulation model of the basal ganglia with and without subthalamic nucleus stimulation.
    Shils JL; Mei LZ; Arle JE
    Stereotact Funct Neurosurg; 2008; 86(1):16-29. PubMed ID: 17881885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of dispersive conductivity and permittivity in volume conductor models of deep brain stimulation.
    Grant PF; Lowery MM
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2386-93. PubMed ID: 20595081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.