BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16095753)

  • 1. Contamination potential of nitrogen compounds in the heterogeneous aquifers of the Choushui River alluvial fan, Taiwan.
    Jang CS; Liu CW
    J Contam Hydrol; 2005 Oct; 79(3-4):135-55. PubMed ID: 16095753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrate probability mapping in the northern aquifer alluvial system of the river Tagus (Portugal) using Disjunctive Kriging.
    Mendes MP; Ribeiro L
    Sci Total Environ; 2010 Feb; 408(5):1021-34. PubMed ID: 19932915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain.
    Ledoux E; Gomez E; Monget JM; Viavattene C; Viennot P; Ducharne A; Benoit M; Mignolet C; Schott C; Mary B
    Sci Total Environ; 2007 Apr; 375(1-3):33-47. PubMed ID: 17275068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotopic evidence of nitrogen sources and nitrogen transformation in arsenic-contaminated groundwater.
    Weng TN; Liu CW; Kao YH; Hsiao SS
    Sci Total Environ; 2017 Feb; 578():167-185. PubMed ID: 27852448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sources of nitrate and ammonium contamination in groundwater under developing Asian megacities.
    Umezawa Y; Hosono T; Onodera S; Siringan F; Buapeng S; Delinom R; Yoshimizu C; Tayasu I; Nagata T; Taniguchi M
    Sci Total Environ; 2008 Oct; 404(2-3):361-76. PubMed ID: 18533227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrate concentrations in river waters of the upper Thames and its tributaries.
    Neal C; Jarvie HP; Neal M; Hill L; Wickham H
    Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial variability of shallow groundwater level, electrical conductivity and nitrate concentration, and risk assessment of nitrate contamination in North China Plain.
    Hu K; Huang Y; Li H; Li B; Chen D; White RE
    Environ Int; 2005 Aug; 31(6):896-903. PubMed ID: 16005970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic analysis to assess the spatial distribution of groundwater nitrate concentrations in the Po catchment (Italy).
    Cinnirella S; Buttafuoco G; Pirrone N
    Environ Pollut; 2005 Feb; 133(3):569-80. PubMed ID: 15519731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence of arsenic in ground water in the Choushui River alluvial fan, Taiwan.
    Liu CW; Wang SW; Jang CS; Lin KH
    J Environ Qual; 2006; 35(1):68-75. PubMed ID: 16391278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An exploration of nitrate concentrations in groundwater aquifers of central-west region of Bangladesh.
    Majumder RK; Hasnat MA; Hossain S; Ikeue K; Machida M
    J Hazard Mater; 2008 Nov; 159(2-3):536-43. PubMed ID: 18406518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Taiwan).
    Liu CW; Jang CS; Liao CM
    Sci Total Environ; 2004 Apr; 321(1-3):173-88. PubMed ID: 15050394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracing the sources of nitrate in the Han River watershed in Korea, using delta15N-NO3- and delta18O-NO3- values.
    Lee KS; Bong YS; Lee D; Kim Y; Kim K
    Sci Total Environ; 2008 Jun; 395(2-3):117-24. PubMed ID: 18342914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. European case studies supporting the derivation of natural background levels and groundwater threshold values for the protection of dependent ecosystems and human health.
    Hinsby K; Condesso de Melo MT; Dahl M
    Sci Total Environ; 2008 Aug; 401(1-3):1-20. PubMed ID: 18486193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecological risk assessment for aquatic species exposed to contaminants in Keelung River, Taiwan.
    Chen CS
    Chemosphere; 2005 Dec; 61(8):1142-58. PubMed ID: 16263384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system.
    Babiker IS; Mohamed MA; Terao H; Kato K; Ohta K
    Environ Int; 2004 Feb; 29(8):1009-17. PubMed ID: 14680883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using multivariate statistical methods to assess the groundwater quality in an arsenic-contaminated area of Southwestern Taiwan.
    Lu KL; Liu CW; Jang CS
    Environ Monit Assess; 2012 Oct; 184(10):6071-85. PubMed ID: 22048921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling nitrate fluxes at the catchment scale using the integrated tool CAWAQS.
    Flipo N; Even S; Poulin M; Théry S; Ledoux E
    Sci Total Environ; 2007 Apr; 375(1-3):69-79. PubMed ID: 17331565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the origin of groundwater nitrate at an air weapons range using the dual isotope approach.
    Bordeleau G; Savard MM; Martel R; Ampleman G; Thiboutot S
    J Contam Hydrol; 2008 Jun; 98(3-4):97-105. PubMed ID: 18499297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing selenium contamination in the irrigated stream-aquifer system of the Arkansas River, Colorado.
    Gates TK; Cody BM; Donnelly JP; Herting AW; Bailey RT; Mueller Price J
    J Environ Qual; 2009; 38(6):2344-56. PubMed ID: 19875790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of health hazard associated with nitrogen compounds in water.
    Pawełczyk A
    Water Sci Technol; 2012; 66(3):666-72. PubMed ID: 22744700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.