BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16096344)

  • 1. Retardation of removal of radiation-induced apoptotic cells in developing neural tubes in macrophage galactose-type C-type lectin-1-deficient mouse embryos.
    Yuita H; Tsuiji M; Tajika Y; Matsumoto Y; Hirano K; Suzuki N; Irimura T
    Glycobiology; 2005 Dec; 15(12):1368-75. PubMed ID: 16096344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redistributions of macrophages expressing the macrophage galactose-type C-type lectin (MGL) during antigen-induced chronic granulation tissue formation.
    Sato K; Imai Y; Higashi N; Kumamoto Y; Mukaida N; Irimura T
    Int Immunol; 2005 May; 17(5):559-68. PubMed ID: 15802308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of murine MGL1 and MGL2 C-type lectins: distinct glycan specificities and tumor binding properties.
    Singh SK; Streng-Ouwehand I; Litjens M; Weelij DR; García-Vallejo JJ; van Vliet SJ; Saeland E; van Kooyk Y
    Mol Immunol; 2009 Mar; 46(6):1240-9. PubMed ID: 19162326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Granulation tissue formation by nonspecific inflammatory agent occurs independently of macrophage galactose-type C-type lectin-1.
    Sato K; Komatsu N; Higashi N; Imai Y; Irimura T
    Clin Immunol; 2005 Apr; 115(1):47-50. PubMed ID: 15870020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clearance of apoptotic cells is not impaired in mouse embryos deficient in class A scavenger receptor types I and II (CD204).
    Komohara Y; Terasaki Y; Kaikita K; Suzuki H; Kodama T; Takeya M
    Dev Dyn; 2005 Jan; 232(1):67-74. PubMed ID: 15580571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lack of antigen-specific tissue remodeling in mice deficient in the macrophage galactose-type calcium-type lectin 1/CD301a.
    Sato K; Imai Y; Higashi N; Kumamoto Y; Onami TM; Hedrick SM; Irimura T
    Blood; 2005 Jul; 106(1):207-15. PubMed ID: 15784728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The amino acids involved in the distinct carbohydrate specificities between macrophage galactose-type C-type lectins 1 and 2 (CD301a and b) of mice.
    Oo-Puthinan S; Maenuma K; Sakakura M; Denda-Nagai K; Tsuiji M; Shimada I; Nakamura-Tsuruta S; Hirabayashi J; Bovin NV; Irimura T
    Biochim Biophys Acta; 2008 Feb; 1780(2):89-100. PubMed ID: 18053814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of sialoadhesin as a dominant lymph node counter-receptor for mouse macrophage galactose-type C-type lectin 1.
    Kumamoto Y; Higashi N; Denda-Nagai K; Tsuiji M; Sato K; Crocker PR; Irimura T
    J Biol Chem; 2004 Nov; 279(47):49274-80. PubMed ID: 15364954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A C-type lectin MGL1/CD301a plays an anti-inflammatory role in murine experimental colitis.
    Saba K; Denda-Nagai K; Irimura T
    Am J Pathol; 2009 Jan; 174(1):144-52. PubMed ID: 19095961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intestinal lamina propria macrophages upregulate interleukin-10 mRNA in response to signals from commensal bacteria recognized by MGL1/CD301a.
    Kurashina R; Denda-Nagai K; Saba K; Hisai T; Hara H; Irimura T
    Glycobiology; 2021 Aug; 31(7):827-837. PubMed ID: 33677516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The macrophage galactose-type lectin-1 (MGL1) recognizes Taenia crassiceps antigens, triggers intracellular signaling, and is critical for resistance to this infection.
    Montero-Barrera D; Valderrama-Carvajal H; Terrazas CA; Rojas-Hernández S; Ledesma-Soto Y; Vera-Arias L; Carrasco-Yépez M; Gómez-García L; Martínez-Saucedo D; Becerra-Díaz M; Terrazas LI
    Biomed Res Int; 2015; 2015():615865. PubMed ID: 25664320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbohydrate binding mechanism of the macrophage galactose-type C-type lectin 1 revealed by saturation transfer experiments.
    Sakakura M; Oo-Puthinan S; Moriyama C; Kimura T; Moriya J; Irimura T; Shimada I
    J Biol Chem; 2008 Nov; 283(48):33665-73. PubMed ID: 18790731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation of Hsp110 expression with caspase-3 and -9 during apoptosis induced by in vivo embryonic exposition to retinoic acid or irradiation in early mouse craniofacial development.
    Gashegu J; Vanmuylder N; Philippson C; Choa-Duterre M; Rooze M; Louryan S
    Orthod Craniofac Res; 2006 May; 9(2):84-92. PubMed ID: 16764683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronological appearance of spontaneous and induced apoptosis during preimplantation development of rabbit and mouse embryos.
    Fabian D; Makarevich AV; Chrenek P; Bukovská A; Koppel J
    Theriogenology; 2007 Dec; 68(9):1271-81. PubMed ID: 17915306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early signs of neuronal apoptosis in the substantia nigra pars compacta of the progressive neurodegenerative mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid model of Parkinson's disease.
    Novikova L; Garris BL; Garris DR; Lau YS
    Neuroscience; 2006 Jun; 140(1):67-76. PubMed ID: 16533572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporospatial patterns of apoptosis in chick embryos during the morphogenetic period of development.
    Hirata M; Hall BK
    Int J Dev Biol; 2000 Oct; 44(7):757-68. PubMed ID: 11128569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of actin cytoskeleton and anchorage-dependent cell spreading induces apoptotic death of mouse neural crest cells cultured in vitro.
    Hinoue A; Takigawa T; Miura T; Nishimura Y; Suzuki S; Shiota K
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Feb; 282(2):130-7. PubMed ID: 15627983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deficient deletion of apoptotic cells by macrophage migration inhibitory factor (MIF) overexpression accelerates photocarcinogenesis.
    Honda A; Abe R; Yoshihisa Y; Makino T; Matsunaga K; Nishihira J; Shimizu H; Shimizu T
    Carcinogenesis; 2009 Sep; 30(9):1597-605. PubMed ID: 19584138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is disturbed clearance of apoptotic keratinocytes responsible for UVB-induced inflammatory skin lesions in systemic lupus erythematosus?
    Reefman E; de Jong MC; Kuiper H; Jonkman MF; Limburg PC; Kallenberg CG; Bijl M
    Arthritis Res Ther; 2006; 8(6):R156. PubMed ID: 17014704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmed cell death in extraocular muscle tendon/sclera precursors.
    Sulik KK; Dehart DB; Johnson CS; Ellis SL; Chen SY; Dunty WC; Zucker RM
    Mol Vis; 2001 Aug; 7():184-91. PubMed ID: 11503002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.