BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 16096373)

  • 1. MicroRNAs: critical regulators of development, cellular physiology and malignancy.
    Mendell JT
    Cell Cycle; 2005 Sep; 4(9):1179-84. PubMed ID: 16096373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. c-Myc-regulated microRNAs modulate E2F1 expression.
    O'Donnell KA; Wentzel EA; Zeller KI; Dang CV; Mendell JT
    Nature; 2005 Jun; 435(7043):839-43. PubMed ID: 15944709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. E2F1 acts as a negative feedback regulator of c-Myc‑induced hTERT transcription during tumorigenesis.
    Zhang Y; Zhang A; Shen C; Zhang B; Rao Z; Wang R; Yang S; Ning S; Mao G; Fang D
    Oncol Rep; 2014 Sep; 32(3):1273-80. PubMed ID: 24969314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. miR-342-3p regulates MYC transcriptional activity via direct repression of E2F1 in human lung cancer.
    Tai MC; Kajino T; Nakatochi M; Arima C; Shimada Y; Suzuki M; Miyoshi H; Yatabe Y; Yanagisawa K; Takahashi T
    Carcinogenesis; 2015 Dec; 36(12):1464-73. PubMed ID: 26483346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reciprocal antagonistic regulation of N-myc mRNA by miR‑17 and the neuronal-specific RNA-binding protein HuD.
    Samaraweera L; Spengler BA; Ross RA
    Oncol Rep; 2017 Jul; 38(1):545-550. PubMed ID: 28560387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. miR-106b-25/miR-17-92 clusters: polycistrons with oncogenic roles in hepatocellular carcinoma.
    Tan W; Li Y; Lim SG; Tan TM
    World J Gastroenterol; 2014 May; 20(20):5962-72. PubMed ID: 24876719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. miR-17-92 cluster microRNAs confers tumorigenicity in multiple myeloma.
    Chen L; Li C; Zhang R; Gao X; Qu X; Zhao M; Qiao C; Xu J; Li J
    Cancer Lett; 2011 Oct; 309(1):62-70. PubMed ID: 21664042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GAM/ZFp/ZNF512B is central to a gene sensor circuitry involving cell-cycle regulators, TGF{beta} effectors, Drosha and microRNAs with opposite oncogenic potentials.
    Tili E; Michaille JJ; Liu CG; Alder H; Taccioli C; Volinia S; Calin GA; Croce CM
    Nucleic Acids Res; 2010 Nov; 38(21):7673-88. PubMed ID: 20639536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNAs as regulators and mediators of c-MYC function.
    Jackstadt R; Hermeking H
    Biochim Biophys Acta; 2015 May; 1849(5):544-53. PubMed ID: 24727092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the MIR155 host gene in physiological and pathological processes.
    Elton TS; Selemon H; Elton SM; Parinandi NL
    Gene; 2013 Dec; 532(1):1-12. PubMed ID: 23246696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A feedback loop comprising PRMT7 and miR-24-2 interplays with Oct4, Nanog, Klf4 and c-Myc to regulate stemness.
    Lee SH; Chen TY; Dhar SS; Gu B; Chen K; Kim YZ; Li W; Lee MG
    Nucleic Acids Res; 2016 Dec; 44(22):10603-10618. PubMed ID: 27625395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor-suppressive microRNA-22 inhibits the transcription of E-box-containing c-Myc target genes by silencing c-Myc binding protein.
    Xiong J; Du Q; Liang Z
    Oncogene; 2010 Sep; 29(35):4980-8. PubMed ID: 20562918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long non-coding RNA NNT-AS1 sponges miR-424/E2F1 to promote the tumorigenesis and cell cycle progression of gastric cancer.
    Chen B; Zhao Q; Guan L; Lv H; Bie L; Huang J; Chen XB
    J Cell Mol Med; 2018 Oct; 22(10):4751-4759. PubMed ID: 30006956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TRIM8 restores p53 tumour suppressor function by blunting N-MYC activity in chemo-resistant tumours.
    Mastropasqua F; Marzano F; Valletti A; Aiello I; Di Tullio G; Morgano A; Liuni S; Ranieri E; Guerrini L; Gasparre G; Sbisà E; Pesole G; Moschetta A; Caratozzolo MF; Tullo A
    Mol Cancer; 2017 Mar; 16(1):67. PubMed ID: 28327152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and analysis of the regulatory network of Myc and microRNAs from high-throughput experimental data.
    Xiong L; Jiang W; Zhou R; Mao C; Guo Z
    Comput Biol Med; 2013 Sep; 43(9):1252-60. PubMed ID: 23930820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MYC, microRNAs and glutamine addiction in cancers.
    Dang CV
    Cell Cycle; 2009 Oct; 8(20):3243-5. PubMed ID: 19806017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A regulatory loop involving miR-22, Sp1, and c-Myc modulates CD147 expression in breast cancer invasion and metastasis.
    Kong LM; Liao CG; Zhang Y; Xu J; Li Y; Huang W; Zhang Y; Bian H; Chen ZN
    Cancer Res; 2014 Jul; 74(14):3764-78. PubMed ID: 24906624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. c-Myc Represses Tumor-Suppressive microRNAs, let-7a, miR-16 and miR-29b, and Induces Cyclin D2-Mediated Cell Proliferation in Ewing's Sarcoma Cell Line.
    Kawano M; Tanaka K; Itonaga I; Iwasaki T; Tsumura H
    PLoS One; 2015; 10(9):e0138560. PubMed ID: 26393798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widespread microRNA repression by Myc contributes to tumorigenesis.
    Chang TC; Yu D; Lee YS; Wentzel EA; Arking DE; West KM; Dang CV; Thomas-Tikhonenko A; Mendell JT
    Nat Genet; 2008 Jan; 40(1):43-50. PubMed ID: 18066065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-Myc-dependent repression of two oncogenic miRNA clusters contributes to triptolide-induced cell death in hepatocellular carcinoma cells.
    Li SG; Shi QW; Yuan LY; Qin LP; Wang Y; Miao YQ; Chen Z; Ling CQ; Qin WX
    J Exp Clin Cancer Res; 2018 Mar; 37(1):51. PubMed ID: 29523159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.