These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 16096500)

  • 1. Calculation of immersion doses from external exposure to a plume of radioactive material.
    Raza S; Avila R
    Health Phys; 2005 Sep; 89(3):247-54. PubMed ID: 16096500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced integral solutions for gamma absorbed dose from Gaussian plume.
    Gorshkov VE; Karmazin IP; Tarasov VI
    Health Phys; 1995 Aug; 69(2):210-8. PubMed ID: 7622367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple approximation for estimating centerline gamma absorbed dose rates due to a continuous Gaussian plume.
    Overcamp TJ; Fjeld RA
    Health Phys; 1987 Aug; 53(2):143-6. PubMed ID: 3610640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 3D Lagrangian particle model for direct plume gamma dose rate calculations.
    Raza S; Avila R
    J Radiol Prot; 2001 Jun; 21(2):145-54. PubMed ID: 11430515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An exact solution to the Gaussian cloud approximation for gamma absorbed dose due to a ground-level release.
    Overcamp TJ; Fjeld RA
    Health Phys; 1983 Apr; 44(4):367-72. PubMed ID: 6841093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solutions to the Gaussian cloud approximation for gamma absorbed dose.
    Overcamp TJ
    Health Phys; 2007 Jan; 92(1):78-81. PubMed ID: 17164603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absorbed dose from traversing spherically symmetric, Gaussian radioactive clouds.
    Thompson JM; Poston JW
    Health Phys; 1999 Jun; 76(6):639-43. PubMed ID: 10334580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Atmospheric Dispersion Theory to Inform the Design of a Short-lived Radioactive Particle Release Experiment.
    Rishel JP; Keillor ME; Arrigo LM; Baciak JE; Detwiler RS; Kernan WJ; Kirkham RR; Milbrath BD; Seifert A; Seifert CE; Smart JE
    Health Phys; 2016 May; 110(5):526-32. PubMed ID: 27023039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-integrated thyroid dose for accidental releases from Pakistan Research Reactor-1.
    Raza SS; Iqbal M; Salahuddin A; Avila R; Pervez S
    J Radiol Prot; 2004 Sep; 24(3):307-14. PubMed ID: 15511022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion of positron emitting radioactive gases in a complex urban building array: a comparison of dose modelling approaches.
    Gallacher DJ; Robins AG; Burt A; Chadwick S; Hayden P; Williams M
    J Radiol Prot; 2016 Dec; 36(4):746-784. PubMed ID: 27655037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid determination of noble gas radionuclide concentrations in power reactor plumes.
    Gogolak CV
    Health Phys; 1984 Apr; 46(4):783-92. PubMed ID: 6323352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation code for estimating external gamma-ray doses from a radioactive plume and contaminated ground using a local-scale atmospheric dispersion model.
    Satoh D; Nakayama H; Furuta T; Yoshihiro T; Sakamoto K
    PLoS One; 2021; 16(1):e0245932. PubMed ID: 33493217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Gaussian-plume based Monte Carlo method for calculating radiation dose in the near field of buildings.
    Gallacher DJ; Robins AG; Hayden P
    J Radiol Prot; 2024 Jun; 44(2):. PubMed ID: 38834053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doses received while crossing a plume of radioactive material released during an accident at a nuclear power plant.
    Scherpelz RI; Desrosiers AE
    Health Phys; 1982 Aug; 43(2):187-203. PubMed ID: 7129874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on enhanced atmospheric dispersion of 41Ar at the Trombay site.
    Chatterjee MK; Divkar JK; Patil SS; Singh R; Pradeepkumar KS; Sharma DN
    Radiat Prot Dosimetry; 2013 Aug; 155(4):483-96. PubMed ID: 23413091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic plume episode identification and cloud shine reconstruction method for ambient gamma dose rates during nuclear accidents.
    Zhang X; Raskob W; Landman C; Trybushnyi D; Haller C; Yuan H
    J Environ Radioact; 2017 Nov; 178-179():36-47. PubMed ID: 28755565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gamma-Ray Dose From an Overhead Plume.
    McNaughton MW; Gillis JM; Ruedig E; Whicker JJ; Fuehne DP
    Health Phys; 2017 May; 112(5):445-450. PubMed ID: 28350698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective dose conversion coefficient for gamma ray exposure from an overhead plume.
    Dey R; Patni HK; Deo Singh K; Kulkarni MS; Anand S
    Phys Med Biol; 2019 Aug; 64(15):155001. PubMed ID: 31239410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of Cloudshine Gamma Dose Calculations in the CAP-88 Dispersion Model.
    McNaughton MW; Gillis JM; Ruedig E; Whicker JJ; Fuehne DP
    Health Phys; 2017 Apr; 112(4):414-419. PubMed ID: 28234703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of radioactive plume gamma dose over a complex terrain using Lagrangian particle dispersion model.
    Rakesh PT; Venkatesan R; Hedde T; Roubin P; Baskaran R; Venkatraman B
    J Environ Radioact; 2015 Jul; 145():30-39. PubMed ID: 25863323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.