BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

572 related articles for article (PubMed ID: 16096667)

  • 21. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M; Zhai Y; Dong S
    Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous determination of adenosine and inosine using single-wall carbon nanotubes modified pyrolytic graphite electrode.
    Goyal RN; Gupta VK; Chatterjee S
    Talanta; 2008 Jul; 76(3):662-8. PubMed ID: 18585336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum.
    Fei S; Chen J; Yao S; Deng G; He D; Kuang Y
    Anal Biochem; 2005 Apr; 339(1):29-35. PubMed ID: 15766706
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly sensitive voltammetric determination of lamotrigine at highly oriented pyrolytic graphite electrode.
    Saberi RS; Shahrokhian S
    Bioelectrochemistry; 2012 Apr; 84():38-43. PubMed ID: 22137203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison and reappraisal of carbon electrodes for the voltammetric detection of dopamine.
    Patel AN; Tan SY; Miller TS; Macpherson JV; Unwin PR
    Anal Chem; 2013 Dec; 85(24):11755-64. PubMed ID: 24308368
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous voltammetric determination of prednisone and prednisolone in human body fluids.
    Goyal RN; Bishnoi S
    Talanta; 2009 Aug; 79(3):768-74. PubMed ID: 19576443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-performance carbon composite electrode based on an ionic liquid as a binder.
    Maleki N; Safavi A; Tajabadi F
    Anal Chem; 2006 Jun; 78(11):3820-6. PubMed ID: 16737243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Edge plane pyrolytic graphite electrodes in electroanalysis: an overview.
    Banks CE; Compton RG
    Anal Sci; 2005 Nov; 21(11):1263-8. PubMed ID: 16317891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detailed analysis of the electron-transfer properties of azurin adsorbed on graphite electrodes using DC and large-amplitude Fourier transformed AC voltammetry.
    Fleming BD; Zhang J; Elton D; Bond AM
    Anal Chem; 2007 Sep; 79(17):6515-26. PubMed ID: 17668927
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of levels of defect sites present in highly ordered pyrolytic graphite electrodes using capacitive and faradaic current components derived simultaneously from large-amplitude Fourier transformed ac voltammetric experiments.
    Lee CY; Bond AM
    Anal Chem; 2009 Jan; 81(2):584-94. PubMed ID: 19140776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode.
    Chen X; Chen J; Deng C; Xiao C; Yang Y; Nie Z; Yao S
    Talanta; 2008 Aug; 76(4):763-7. PubMed ID: 18656655
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical study on the electrochemical behavior of norepinephrine at Nafion multi-walled carbon nanotubes modified pyrolytic graphite electrode.
    Song Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Aug; 67(5):1169-77. PubMed ID: 17141559
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancing the electrochemical response of myoglobin with carbon nanotube electrodes.
    Esplandiu MJ; Pacios M; Cyganek L; Bartroli J; del Valle M
    Nanotechnology; 2009 Sep; 20(35):355502. PubMed ID: 19671979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH.
    Pérez B; Del Valle M; Alegret S; Merkoçi A
    Talanta; 2007 Dec; 74(3):398-404. PubMed ID: 18371655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of edge- and basal-plane pyrolytic graphite electrodes towards the sensitive determination of hydrocortisone.
    Goyal RN; Chatterjee S; Rana AR
    Talanta; 2010 Nov; 83(1):149-55. PubMed ID: 21035656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon nanotube/teflon composite electrochemical sensors and biosensors.
    Wang J; Musameh M
    Anal Chem; 2003 May; 75(9):2075-9. PubMed ID: 12720343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Voltammetric determination of pyridoxine (vitamin B6) by use of a chemically-modified glassy carbon electrode.
    Qu W; Wu K; Hu S
    J Pharm Biomed Anal; 2004 Nov; 36(3):631-5. PubMed ID: 15522541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors.
    Zhou M; Shang L; Li B; Huang L; Dong S
    Biosens Bioelectron; 2008 Nov; 24(3):442-7. PubMed ID: 18541421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous determination of epinephrine and norepinephrine in human blood plasma and urine samples using nanotubes modified edge plane pyrolytic graphite electrode.
    Goyal RN; Bishnoi S
    Talanta; 2011 Mar; 84(1):78-83. PubMed ID: 21315901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemistry at carbon nanotubes: perspective and issues.
    Dumitrescu I; Unwin PR; Macpherson JV
    Chem Commun (Camb); 2009 Dec; (45):6886-901. PubMed ID: 19904345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.