These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Decomposition of diverse litter mixtures in streams. Lecerf A; Risnoveanu G; Popescu C; Gessner MO; Chauvet E Ecology; 2007 Jan; 88(1):219-27. PubMed ID: 17489470 [TBL] [Abstract][Full Text] [Related]
23. Land use effects on leaf litter breakdown in low-order streams draining a rapidly developing tropical watershed in Puerto Rico. Torres PJ; Ramírez A Rev Biol Trop; 2014 Apr; 62 Suppl 2():129-42. PubMed ID: 25189074 [TBL] [Abstract][Full Text] [Related]
24. The breakdown and decomposition of sweet chestnut (Castanea sativa Mill.) and beech (Fagus sylvatica L.) leaf litter in two deciduous woodland soils : I. Breakdown, leaching and decomposition. Anderson JM Oecologia; 1973 Sep; 12(3):251-274. PubMed ID: 28308230 [TBL] [Abstract][Full Text] [Related]
25. Relative importance of bacteria and fungi in a tropical headwater stream: leaf decomposition and invertebrate feeding preference. Wright MS; Covich AP Microb Ecol; 2005 May; 49(4):536-46. PubMed ID: 16052374 [TBL] [Abstract][Full Text] [Related]
26. Functional leaf traits and biodiversity effects on litter decomposition in a stream. Schindler MH; Gessner MO Ecology; 2009 Jun; 90(6):1641-9. PubMed ID: 19569378 [TBL] [Abstract][Full Text] [Related]
27. Leaf litter decomposition of native and introduced tree species of contrasting quality in headwater streams: how does the regional setting matter? Casas JJ; Larrañaga A; Menéndez M; Pozo J; Basaguren A; Martínez A; Pérez J; González JM; Mollá S; Casado C; Descals E; Roblas N; López-González JA; Valenzuela JL Sci Total Environ; 2013 Aug; 458-460():197-208. PubMed ID: 23648449 [TBL] [Abstract][Full Text] [Related]
28. Leaf litter breakdown along an elevational gradient in Australian alpine streams. Werry LP; Bundschuh M; Mitrovic SM; Lim RP; Kefford BJ Ecol Evol; 2022 Oct; 12(10):e9433. PubMed ID: 36311402 [TBL] [Abstract][Full Text] [Related]
29. Stream ecosystem integrity is impaired by logging and shifting agriculture in a global megadiversity center (Sarawak, Borneo). Jinggut T; Yule CM; Boyero L Sci Total Environ; 2012 Oct; 437():83-90. PubMed ID: 22922133 [TBL] [Abstract][Full Text] [Related]
30. The leaf breakdown of Picramnia sellowii (Picramniales: Picramniaceae) as index of anthropic disturbances in tropical streams. Lopes MP; Martins RT; Silveira LS; Alves RG Braz J Biol; 2015 Nov; 75(4):846-53. PubMed ID: 26628230 [TBL] [Abstract][Full Text] [Related]
31. Litter identity mediates predator impacts on the functioning of an aquatic detritus-based food web. Jabiol J; Cornut J; Danger M; Jouffroy M; Elger A; Chauvet E Oecologia; 2014 Sep; 176(1):225-35. PubMed ID: 24938833 [TBL] [Abstract][Full Text] [Related]
32. Chemistry Matters: High Leaf Litter Consumption Does Not Represent a Direct Increase in Shredders' Biomass. Cararo ER; Bernardi JP; Lima-Rezende CA; Magro JD; Rezende RS Neotrop Entomol; 2023 Jun; 52(3):452-462. PubMed ID: 37129841 [TBL] [Abstract][Full Text] [Related]
33. Effects of cadmium and resource quality on freshwater detritus processing chains: a microcosm approach with two insect species. Campos D; Alves A; Lemos MF; Correia A; Soares AM; Pestana JL Ecotoxicology; 2014 Jul; 23(5):830-9. PubMed ID: 24648031 [TBL] [Abstract][Full Text] [Related]
34. Temperature dependence of leaf breakdown in streams differs between organismal groups and leaf species. Cummins CS; Rosemond AD; Tomczyk NJ; Wenger SJ; Bumpers PM; Gulis V; Helton AM; Benstead JP Ecology; 2024 Oct; 105(10):e4405. PubMed ID: 39245911 [TBL] [Abstract][Full Text] [Related]
35. The importance of diet-related effects of the antibiotic ciprofloxacin on the leaf-shredding invertebrate Gammarus fossarum (Crustacea; Amphipoda). Konschak M; Zubrod JP; Baudy P; Fink P; Kenngott K; Lüderwald S; Englert K; Jusi C; Schulz R; Bundschuh M Aquat Toxicol; 2020 May; 222():105461. PubMed ID: 32171118 [TBL] [Abstract][Full Text] [Related]
36. Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data. Wallace JB; Eggert SL; Meyer JL; Webster JR Ecology; 2015 May; 96(5):1213-28. PubMed ID: 26236836 [TBL] [Abstract][Full Text] [Related]
37. Inter- and intraspecific functional variability of aquatic fungal decomposers and freshwater ecosystem processes. Seena S; Casotti C; Cornut J Sci Total Environ; 2020 Mar; 707():135570. PubMed ID: 31784168 [TBL] [Abstract][Full Text] [Related]
38. Key plant species and detritivores drive diversity effects on instream leaf litter decomposition more than functional diversity: A microcosm study. Rubio-Ríos J; Pérez J; Salinas MJ; Fenoy E; López-Rojo N; Boyero L; Casas JJ Sci Total Environ; 2021 Dec; 798():149266. PubMed ID: 34340079 [TBL] [Abstract][Full Text] [Related]
39. [Litter decomposition and associated macro-invertebrate functional feeding groups in a third-order stream of northern Guangdong]. Yan L; Zhao Y; Han CX; Tong XL Ying Yong Sheng Tai Xue Bao; 2007 Nov; 18(11):2573-9. PubMed ID: 18260466 [TBL] [Abstract][Full Text] [Related]
40. Preferential feeding by an aquatic consumer mediates non-additive decomposition of speciose leaf litter. Swan CM; Palmer MA Oecologia; 2006 Aug; 149(1):107-14. PubMed ID: 16676206 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]