These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 1609739)
1. Chemical composition and morphology of welding fume particles and grinding dusts. Karlsen JT; Farrants G; Torgrimsen T; Reith A Am Ind Hyg Assoc J; 1992 May; 53(5):290-7. PubMed ID: 1609739 [TBL] [Abstract][Full Text] [Related]
2. [Assessment of occupational exposure of welders based on determination of fumes and their components produced during stainless steel welding]. Stanisławska M; Janasik B; Trzcinka-Ochocka M Med Pr; 2011; 62(4):359-68. PubMed ID: 21995105 [TBL] [Abstract][Full Text] [Related]
3. Cytotoxic effects of four types of welding fumes on macrophages in vitro: a comparative study. Pasanen JT; Gustafsson TE; Kalliomäki PL; Tossavainen A; Järvisalo JO J Toxicol Environ Health; 1986; 18(1):143-52. PubMed ID: 3701879 [TBL] [Abstract][Full Text] [Related]
4. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace. Keane M; Siert A; Stone S; Chen BT J Occup Environ Hyg; 2016; 13(1):1-8. PubMed ID: 26267301 [TBL] [Abstract][Full Text] [Related]
5. Kinetics of nickel and chromium in rats exposed to different stainless-steel welding fumes. Kalliomäki PL; Olkinuora M; Hyvärinen HK; Kalliomäki K IARC Sci Publ; 1984; (53):385-93. PubMed ID: 6532989 [TBL] [Abstract][Full Text] [Related]
6. Persistence of deposited metals in the lungs after stainless steel and mild steel welding fume inhalation in rats. Antonini JM; Roberts JR; Stone S; Chen BT; Schwegler-Berry D; Chapman R; Zeidler-Erdely PC; Andrews RN; Frazer DG Arch Toxicol; 2011 May; 85(5):487-98. PubMed ID: 20924559 [TBL] [Abstract][Full Text] [Related]
7. Retention and clearance of stainless steel shieldgas welding fumes in rat lungs. Kalliomäki PL; Tuomisaari M; Lakomaa EL; Kalliomäki K; Kivelä R Am Ind Hyg Assoc J; 1983 Sep; 44(9):649-54. PubMed ID: 6637809 [TBL] [Abstract][Full Text] [Related]
8. Changes in blood manganese concentration and MRI t1 relaxation time during 180 days of stainless steel welding-fume exposure in cynomolgus monkeys. Sung JH; Kim CY; Yang SO; Khang HS; Cheong HK; Lee JS; Song CW; Park JD; Han JH; Chung YH; Choi BS; Kwon IH; Cho MH; Yu IJ Inhal Toxicol; 2007 Jan; 19(1):47-55. PubMed ID: 17127642 [TBL] [Abstract][Full Text] [Related]
9. Control of Cr6+ emissions from gas metal arc welding using a silica precursor as a shielding gas additive. Topham N; Wang J; Kalivoda M; Huang J; Yu KM; Hsu YM; Wu CY; Oh S; Cho K; Paulson K Ann Occup Hyg; 2012 Mar; 56(2):233-41. PubMed ID: 22104317 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of occupational exposure to toxic metals released in the process of aluminum welding. Matczak W; Gromiec J Appl Occup Environ Hyg; 2002 Apr; 17(4):296-303. PubMed ID: 11942673 [TBL] [Abstract][Full Text] [Related]
11. Hexavalent chromium content in stainless steel welding fumes is dependent on the welding process and shield gas type. Keane M; Stone S; Chen B; Slaven J; Schwegler-Berry D; Antonini J J Environ Monit; 2009 Feb; 11(2):418-24. PubMed ID: 19212602 [TBL] [Abstract][Full Text] [Related]
12. Design, construction, and characterization of a novel robotic welding fume generator and inhalation exposure system for laboratory animals. Antonini JM; Afshari AA; Stone S; Chen B; Schwegler-Berry D; Fletcher WG; Goldsmith WT; Vandestouwe KH; McKinney W; Castranova V; Frazer DG J Occup Environ Hyg; 2006 Apr; 3(4):194-203; quiz D45. PubMed ID: 16531292 [TBL] [Abstract][Full Text] [Related]
13. Critical evaluation of sequential leaching procedures for the determination of Ni and Mn species in welding fumes. Berlinger B; Náray M; Sajó I; Záray G Ann Occup Hyg; 2009 Jun; 53(4):333-40. PubMed ID: 19318590 [TBL] [Abstract][Full Text] [Related]
14. [Inhalation exposure to welding fumes of arc welders in processing Cr-Ni steel in large chemical industry]. Dyrba BC; Richter KH Z Gesamte Hyg; 1989 May; 35(5):271-5. PubMed ID: 2750235 [TBL] [Abstract][Full Text] [Related]
15. Human biomonitoring of chromium and nickel from an experimental exposure to manual metal arc welding fumes of low and high alloyed steel. Bertram J; Brand P; Schettgen T; Lenz K; Purrio E; Reisgen U; Kraus T Ann Occup Hyg; 2015 May; 59(4):467-80. PubMed ID: 25512666 [TBL] [Abstract][Full Text] [Related]
16. Size-separated particle fractions of stainless steel welding fume particles - A multi-analytical characterization focusing on surface oxide speciation and release of hexavalent chromium. Mei N; Belleville L; Cha Y; Olofsson U; Odnevall Wallinder I; Persson KA; Hedberg YS J Hazard Mater; 2018 Jan; 342():527-535. PubMed ID: 28886565 [TBL] [Abstract][Full Text] [Related]
17. The particle size distribution, density, and specific surface area of welding fumes from SMAW and GMAW mild and stainless steel consumables. Hewett P Am Ind Hyg Assoc J; 1995 Feb; 56(2):128-35. PubMed ID: 7856513 [TBL] [Abstract][Full Text] [Related]
18. Relation between various chromium compounds and some other elements in fumes from manual metal arc stainless steel welding. Matczak W; Chmielnicka J Br J Ind Med; 1993 Mar; 50(3):244-51. PubMed ID: 8457491 [TBL] [Abstract][Full Text] [Related]
19. [Determination of fumes and their elements from flux cored arc welding]. Matczak W; Przybylska-Stanisławska M Med Pr; 2004; 55(6):481-9. PubMed ID: 15887517 [TBL] [Abstract][Full Text] [Related]
20. Characterization of Particulate Fume and Oxides Emission from Stainless Steel Plasma Cutting. Wang J; Hoang T; Floyd EL; Regens JL Ann Work Expo Health; 2017 Apr; 61(3):311-320. PubMed ID: 28355418 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]