These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
445 related articles for article (PubMed ID: 16097752)
1. Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis. Kokubu M; Ishihama Y; Sato T; Nagasu T; Oda Y Anal Chem; 2005 Aug; 77(16):5144-54. PubMed ID: 16097752 [TBL] [Abstract][Full Text] [Related]
2. Dynamic identification of phosphopeptides using immobilized metal ion affinity chromatography enrichment, subsequent partial beta-elimination/chemical tagging and matrix-assisted laser desorption/ionization mass spectrometric analysis. Ahn YH; Park EJ; Cho K; Kim JY; Ha SH; Ryu SH; Yoo JS Rapid Commun Mass Spectrom; 2004; 18(20):2495-501. PubMed ID: 15384178 [TBL] [Abstract][Full Text] [Related]
3. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. Li Y; Xu X; Qi D; Deng C; Yang P; Zhang X J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453 [TBL] [Abstract][Full Text] [Related]
4. Enrichment of phosphopeptides using biphasic immobilized metal affinity-reversed phase microcolumns. Schilling M; Knapp DR J Proteome Res; 2008 Sep; 7(9):4164-72. PubMed ID: 18642943 [TBL] [Abstract][Full Text] [Related]
5. Preparation of monodisperse immobilized Ti(4+) affinity chromatography microspheres for specific enrichment of phosphopeptides. Yu Z; Han G; Sun S; Jiang X; Chen R; Wang F; Wu R; Ye M; Zou H Anal Chim Acta; 2009 Mar; 636(1):34-41. PubMed ID: 19231353 [TBL] [Abstract][Full Text] [Related]
6. Complementary Fe(3+)- and Ti(4+)-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides. Lai AC; Tsai CF; Hsu CC; Sun YN; Chen YJ Rapid Commun Mass Spectrom; 2012 Sep; 26(18):2186-94. PubMed ID: 22886815 [TBL] [Abstract][Full Text] [Related]
7. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. Zhou H; Ye M; Dong J; Han G; Jiang X; Wu R; Zou H J Proteome Res; 2008 Sep; 7(9):3957-67. PubMed ID: 18630941 [TBL] [Abstract][Full Text] [Related]
8. Enrichment of phosphopeptides by Fe3+-immobilized magnetic nanoparticles for phosphoproteome analysis of the plasma membrane of mouse liver. Tan F; Zhang Y; Mi W; Wang J; Wei J; Cai Y; Qian X J Proteome Res; 2008 Mar; 7(3):1078-87. PubMed ID: 18266315 [TBL] [Abstract][Full Text] [Related]
9. Phosphoric acid enhances the performance of Fe(III) affinity chromatography and matrix-assisted laser desorption/ionization tandem mass spectrometry for recovery, detection and sequencing of phosphopeptides. Stensballe A; Jensen ON Rapid Commun Mass Spectrom; 2004; 18(15):1721-30. PubMed ID: 15282771 [TBL] [Abstract][Full Text] [Related]
10. Coupling strong anion-exchange monolithic capillary with MALDI-TOF MS for sensitive detection of phosphopeptides in protein digest. Dong M; Wu M; Wang F; Qin H; Han G; Dong J; Wu R; Ye M; Liu Z; Zou H Anal Chem; 2010 Apr; 82(7):2907-15. PubMed ID: 20199055 [TBL] [Abstract][Full Text] [Related]
11. Optimized IMAC-IMAC protocol for phosphopeptide recovery from complex biological samples. Ye J; Zhang X; Young C; Zhao X; Hao Q; Cheng L; Jensen ON J Proteome Res; 2010 Jul; 9(7):3561-73. PubMed ID: 20450229 [TBL] [Abstract][Full Text] [Related]
12. Enrichment and characterization of phosphopeptides by immobilized metal affinity chromatography (IMAC) and mass spectrometry. Thingholm TE; Jensen ON Methods Mol Biol; 2009; 527():47-56, xi. PubMed ID: 19241004 [TBL] [Abstract][Full Text] [Related]
13. Analysis of protein phosphorylation by monolithic extraction columns based on poly(divinylbenzene) containing embedded titanium dioxide and zirconium dioxide nano-powders. Rainer M; Sonderegger H; Bakry R; Huck CW; Morandell S; Huber LA; Gjerde DT; Bonn GK Proteomics; 2008 Nov; 8(21):4593-602. PubMed ID: 18837466 [TBL] [Abstract][Full Text] [Related]
14. Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. Tsai CF; Wang YT; Chen YR; Lai CY; Lin PY; Pan KT; Chen JY; Khoo KH; Chen YJ J Proteome Res; 2008 Sep; 7(9):4058-69. PubMed ID: 18707149 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of the efficiency of phosphoproteomic identification by removing phosphates after phosphopeptide enrichment. Ishihama Y; Wei FY; Aoshima K; Sato T; Kuromitsu J; Oda Y J Proteome Res; 2007 Mar; 6(3):1139-44. PubMed ID: 17330947 [TBL] [Abstract][Full Text] [Related]
16. Immobilized metal affinity chromatography/reversed-phase enrichment of phosphopeptides and analysis by CID/ETD tandem mass spectrometry. Navajas R; Paradela A; Albar JP Methods Mol Biol; 2011; 681():337-48. PubMed ID: 20978974 [TBL] [Abstract][Full Text] [Related]
17. Development of an off-line capillary column IMAC phosphopeptide enrichment method for label-free phosphorylation relative quantification. Choi H; Lee S; Jun CD; Park ZY J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Oct; 879(28):2991-7. PubMed ID: 21930439 [TBL] [Abstract][Full Text] [Related]
19. Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Zhou H; Tian R; Ye M; Xu S; Feng S; Pan C; Jiang X; Li X; Zou H Electrophoresis; 2007 Jul; 28(13):2201-15. PubMed ID: 17539039 [TBL] [Abstract][Full Text] [Related]
20. Phosphoproteomic analysis using immobilized metal ion affinity chromatography on the basis of cellulose powder. Feuerstein I; Morandell S; Stecher G; Huck CW; Stasyk T; Huang HL; Huber LA; Bonn GK Proteomics; 2005 Jan; 5(1):46-54. PubMed ID: 15744834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]