These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 16097870)

  • 1. Slow feature analysis yields a rich repertoire of complex cell properties.
    Berkes P; Wiskott L
    J Vis; 2005 Jul; 5(6):579-602. PubMed ID: 16097870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptive field self-organization in a model of the fine structure in v1 cortical columns.
    Lücke J
    Neural Comput; 2009 Oct; 21(10):2805-45. PubMed ID: 19548804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theory of slow feature analysis for transformation-based input signals with an application to complex cells.
    Sprekeler H; Wiskott L
    Neural Comput; 2011 Feb; 23(2):303-35. PubMed ID: 21105830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multinomial Bayesian learning for modeling classical and nonclassical receptive field properties.
    Hosoya H
    Neural Comput; 2012 Aug; 24(8):2119-50. PubMed ID: 22509962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replicating receptive fields of simple and complex cells in primary visual cortex in a neuronal network model with temporal and population sparseness and reliability.
    Tanaka T; Aoyagi T; Kaneko T
    Neural Comput; 2012 Oct; 24(10):2700-25. PubMed ID: 22845820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial scene representations formed by self-organizing learning in a hippocampal extension of the ventral visual system.
    Rolls ET; Tromans JM; Stringer SM
    Eur J Neurosci; 2008 Nov; 28(10):2116-27. PubMed ID: 19046392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow feature analysis for human action recognition.
    Zhang Z; Tao D
    IEEE Trans Pattern Anal Mach Intell; 2012 Mar; 34(3):436-50. PubMed ID: 21808089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of simple-cell receptive field properties by learning a sparse code for natural images.
    Olshausen BA; Field DJ
    Nature; 1996 Jun; 381(6583):607-9. PubMed ID: 8637596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural computation of visual imaging based on Kronecker product in the primary visual cortex.
    Songnian Z; Qi Z; Zhen J; Guozheng Y; Li Y
    BMC Neurosci; 2010 Mar; 11():43. PubMed ID: 20346118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural image sequences constrain dynamic receptive fields and imply a sparse code.
    Häusler C; Susemihl A; Nawrot MP
    Brain Res; 2013 Nov; 1536():53-67. PubMed ID: 23933349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of orientation-selective inhibition in the primary visual cortex: a Bayes-Markov computational model.
    Shirazi MN
    Biol Cybern; 2004 Aug; 91(2):115-30. PubMed ID: 15340852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is slowness a learning principle of the visual cortex?
    Wiskott L; Berkes P
    Zoology (Jena); 2003; 106(4):373-82. PubMed ID: 16351921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of cortical feedback in the generation of the temporal receptive field responses of lateral geniculate nucleus neurons: a computational modelling study.
    Yousif N; Denham M
    Biol Cybern; 2007 Oct; 97(4):269-77. PubMed ID: 17657507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences.
    Ringach DL; Hawken MJ; Shapley R
    J Vis; 2002; 2(1):12-24. PubMed ID: 12678594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Squirrel visual cortex neurons selective for contour orientation].
    Supin AIa; Polkoshnikov EV
    Neirofiziologiia; 1979; 11(6):540-9. PubMed ID: 514413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of modulatory input for V1 activity and perception.
    Paradiso MA; MacEvoy SP; Huang X; Blau S
    Prog Brain Res; 2005; 149():257-67. PubMed ID: 16226589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of 'feedback' signals on spatial integration in receptive fields of cat area 17 neurons.
    Wang C; Huang JY; Bardy C; FitzGibbon T; Dreher B
    Brain Res; 2010 Apr; 1328():34-48. PubMed ID: 20206150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning invariance from natural images inspired by observations in the primary visual cortex.
    Teichmann M; Wiltschut J; Hamker F
    Neural Comput; 2012 May; 24(5):1271-96. PubMed ID: 22295987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Neurons of the rabbit visual cortex with simple and complex visual fields].
    Supin AIa
    Neirofiziologiia; 1978; 10(1):13-21. PubMed ID: 628467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How are complex cell properties adapted to the statistics of natural stimuli?
    Körding KP; Kayser C; Einhäuser W; König P
    J Neurophysiol; 2004 Jan; 91(1):206-12. PubMed ID: 12904330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.