These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 16097870)
1. Slow feature analysis yields a rich repertoire of complex cell properties. Berkes P; Wiskott L J Vis; 2005 Jul; 5(6):579-602. PubMed ID: 16097870 [TBL] [Abstract][Full Text] [Related]
2. Receptive field self-organization in a model of the fine structure in v1 cortical columns. Lücke J Neural Comput; 2009 Oct; 21(10):2805-45. PubMed ID: 19548804 [TBL] [Abstract][Full Text] [Related]
3. A theory of slow feature analysis for transformation-based input signals with an application to complex cells. Sprekeler H; Wiskott L Neural Comput; 2011 Feb; 23(2):303-35. PubMed ID: 21105830 [TBL] [Abstract][Full Text] [Related]
4. Multinomial Bayesian learning for modeling classical and nonclassical receptive field properties. Hosoya H Neural Comput; 2012 Aug; 24(8):2119-50. PubMed ID: 22509962 [TBL] [Abstract][Full Text] [Related]
5. Replicating receptive fields of simple and complex cells in primary visual cortex in a neuronal network model with temporal and population sparseness and reliability. Tanaka T; Aoyagi T; Kaneko T Neural Comput; 2012 Oct; 24(10):2700-25. PubMed ID: 22845820 [TBL] [Abstract][Full Text] [Related]
6. Spatial scene representations formed by self-organizing learning in a hippocampal extension of the ventral visual system. Rolls ET; Tromans JM; Stringer SM Eur J Neurosci; 2008 Nov; 28(10):2116-27. PubMed ID: 19046392 [TBL] [Abstract][Full Text] [Related]
7. Slow feature analysis for human action recognition. Zhang Z; Tao D IEEE Trans Pattern Anal Mach Intell; 2012 Mar; 34(3):436-50. PubMed ID: 21808089 [TBL] [Abstract][Full Text] [Related]
8. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Olshausen BA; Field DJ Nature; 1996 Jun; 381(6583):607-9. PubMed ID: 8637596 [TBL] [Abstract][Full Text] [Related]
9. Neural computation of visual imaging based on Kronecker product in the primary visual cortex. Songnian Z; Qi Z; Zhen J; Guozheng Y; Li Y BMC Neurosci; 2010 Mar; 11():43. PubMed ID: 20346118 [TBL] [Abstract][Full Text] [Related]
11. Emergence of orientation-selective inhibition in the primary visual cortex: a Bayes-Markov computational model. Shirazi MN Biol Cybern; 2004 Aug; 91(2):115-30. PubMed ID: 15340852 [TBL] [Abstract][Full Text] [Related]
12. Is slowness a learning principle of the visual cortex? Wiskott L; Berkes P Zoology (Jena); 2003; 106(4):373-82. PubMed ID: 16351921 [TBL] [Abstract][Full Text] [Related]
13. The role of cortical feedback in the generation of the temporal receptive field responses of lateral geniculate nucleus neurons: a computational modelling study. Yousif N; Denham M Biol Cybern; 2007 Oct; 97(4):269-77. PubMed ID: 17657507 [TBL] [Abstract][Full Text] [Related]
14. Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences. Ringach DL; Hawken MJ; Shapley R J Vis; 2002; 2(1):12-24. PubMed ID: 12678594 [TBL] [Abstract][Full Text] [Related]