These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 16098567)

  • 1. Similarities and differences in the thioredoxin superfamily.
    Carvalho AP; Fernandes PA; Ramos MJ
    Prog Biophys Mol Biol; 2006 Jul; 91(3):229-48. PubMed ID: 16098567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Snapshots of DsbA in action: detection of proteins in the process of oxidative folding.
    Kadokura H; Tian H; Zander T; Bardwell JC; Beckwith J
    Science; 2004 Jan; 303(5657):534-7. PubMed ID: 14739460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the DeltapKa between the active site cysteines of thioredoxin and DsbA.
    Carvalho AT; Fernandes PA; Ramos MJ
    J Comput Chem; 2006 Jun; 27(8):966-75. PubMed ID: 16586531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for proton shuffling in a thioredoxin-like protein during catalysis.
    Narzi D; Siu SW; Stirnimann CU; Grimshaw JP; Glockshuber R; Capitani G; Böckmann RA
    J Mol Biol; 2008 Oct; 382(4):978-86. PubMed ID: 18692066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution structures of Escherichia coli cDsbD in different redox states: A combined crystallographic, biochemical and computational study.
    Stirnimann CU; Rozhkova A; Grauschopf U; Böckmann RA; Glockshuber R; Capitani G; Grütter MG
    J Mol Biol; 2006 May; 358(3):829-45. PubMed ID: 16545842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure, dynamics and electrostatics of the active site of glutaredoxin 3 from Escherichia coli: comparison with functionally related proteins.
    Foloppe N; Sagemark J; Nordstrand K; Berndt KD; Nilsson L
    J Mol Biol; 2001 Jul; 310(2):449-70. PubMed ID: 11428900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathways of disulfide bond formation in Escherichia coli.
    Messens J; Collet JF
    Int J Biochem Cell Biol; 2006; 38(7):1050-62. PubMed ID: 16446111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm.
    Jonda S; Huber-Wunderlich M; Glockshuber R; Mössner E
    EMBO J; 1999 Jun; 18(12):3271-81. PubMed ID: 10369668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An engineered pathway for the formation of protein disulfide bonds.
    Masip L; Pan JL; Haldar S; Penner-Hahn JE; DeLisa MP; Georgiou G; Bardwell JC; Collet JF
    Science; 2004 Feb; 303(5661):1185-9. PubMed ID: 14976313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conserved cis-proline precludes metal binding by the active site thiolates in members of the thioredoxin family of proteins.
    Su D; Berndt C; Fomenko DE; Holmgren A; Gladyshev VN
    Biochemistry; 2007 Jun; 46(23):6903-10. PubMed ID: 17503777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study on disulfide bond formation protein A in Escherichia coli].
    Luo M; Guan YX; Yao SJ
    Sheng Wu Gong Cheng Xue Bao; 2007 Jan; 23(1):7-15. PubMed ID: 17366881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of the DsbA protein required for disulphide bond formation in vivo.
    Martin JL; Bardwell JC; Kuriyan J
    Nature; 1993 Sep; 365(6445):464-8. PubMed ID: 8413591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A periplasmic reducing system protects single cysteine residues from oxidation.
    Depuydt M; Leonard SE; Vertommen D; Denoncin K; Morsomme P; Wahni K; Messens J; Carroll KS; Collet JF
    Science; 2009 Nov; 326(5956):1109-11. PubMed ID: 19965429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles.
    Ladenstein R; Ren B
    FEBS J; 2006 Sep; 273(18):4170-85. PubMed ID: 16930136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of pH on the oxidation-reduction properties of thioredoxins.
    Setterdahl AT; Chivers PT; Hirasawa M; Lemaire SD; Keryer E; Miginiac-Maslow M; Kim SK; Mason J; Jacquot JP; Longbine CC; de Lamotte-Guery F; Knaff DB
    Biochemistry; 2003 Dec; 42(50):14877-84. PubMed ID: 14674763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The oxidized subunit B8 from human complex I adopts a thioredoxin fold.
    Brockmann C; Diehl A; Rehbein K; Strauss H; Schmieder P; Korn B; Kühne R; Oschkinat H
    Structure; 2004 Sep; 12(9):1645-54. PubMed ID: 15341729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural classification of thioredoxin-like fold proteins.
    Qi Y; Grishin NV
    Proteins; 2005 Feb; 58(2):376-88. PubMed ID: 15558583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites.
    Tian G; Xiang S; Noiva R; Lennarz WJ; Schindelin H
    Cell; 2006 Jan; 124(1):61-73. PubMed ID: 16413482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the -C-X1-X2-C- motif in the active site of the thioredoxin superfamily: E. coli DsbA and its mutants as a model system.
    Karshikoff A; Nilsson L; Foloppe N
    Biochemistry; 2013 Aug; 52(34):5730-45. PubMed ID: 23879632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli.
    McCarthy AA; Haebel PW; Törrönen A; Rybin V; Baker EN; Metcalf P
    Nat Struct Biol; 2000 Mar; 7(3):196-9. PubMed ID: 10700276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.