BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 16098593)

  • 1. Profile of Toll-like receptor expressions and induction of nitric oxide synthesis by Toll-like receptor agonists in chicken monocytes.
    He H; Genovese KJ; Nisbet DJ; Kogut MH
    Mol Immunol; 2006 Mar; 43(7):783-9. PubMed ID: 16098593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergy of CpG oligodeoxynucleotide and double-stranded RNA (poly I:C) on nitric oxide induction in chicken peripheral blood monocytes.
    He H; Genovese KJ; Nisbet DJ; Kogut MH
    Mol Immunol; 2007 May; 44(12):3234-42. PubMed ID: 17339052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and function of Toll-like receptors in chicken heterophils.
    Kogut MH; Iqbal M; He H; Philbin V; Kaiser P; Smith A
    Dev Comp Immunol; 2005; 29(9):791-807. PubMed ID: 15936435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential induction of nitric oxide, degranulation, and oxidative burst activities in response to microbial agonist stimulations in monocytes and heterophils from young commercial turkeys.
    He H; Genovese KJ; Swaggerty CL; Nisbet DJ; Kogut MH
    Vet Immunol Immunopathol; 2008 Jun; 123(3-4):177-85. PubMed ID: 18304649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CpG oligodeoxynucleotide and double-stranded RNA synergize to enhance nitric oxide production and mRNA expression of inducible nitric oxide synthase, pro-inflammatory cytokines and chemokines in chicken monocytes.
    He H; MacKinnon KM; Genovese KJ; Kogut MH
    Innate Immun; 2011 Apr; 17(2):137-44. PubMed ID: 20083501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined CpG and poly I:C stimulation of monocytes results in unique signaling activation not observed with the individual ligands.
    Arsenault RJ; Kogut MH; He H
    Cell Signal; 2013 Nov; 25(11):2246-54. PubMed ID: 23876795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of toll-like receptors on human adipose-derived stromal cells.
    Hwa Cho H; Bae YC; Jung JS
    Stem Cells; 2006 Dec; 24(12):2744-52. PubMed ID: 16902195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential induction of MyD88- and TRIF-dependent pathways in equine monocytes by Toll-like receptor agonists.
    Figueiredo MD; Vandenplas ML; Hurley DJ; Moore JN
    Vet Immunol Immunopathol; 2009 Jan; 127(1-2):125-34. PubMed ID: 19019456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human monocytoid cells as a model to study Toll-like receptor-mediated activation.
    Remer KA; Brcic M; Sauter KS; Jungi TW
    J Immunol Methods; 2006 Jun; 313(1-2):1-10. PubMed ID: 16720029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-talk between toll-like receptors 5 and 9 on activation of human immune responses.
    Merlo A; Calcaterra C; Mènard S; Balsari A
    J Leukoc Biol; 2007 Sep; 82(3):509-18. PubMed ID: 17586660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand-induced differential cross-regulation of Toll-like receptors 2, 4 and 5 in intestinal epithelial cells.
    van Aubel RA; Keestra AM; Krooshoop DJ; van Eden W; van Putten JP
    Mol Immunol; 2007 Jul; 44(15):3702-14. PubMed ID: 17493681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toll-like receptor, MHC II, B7 and cytokine expression by porcine monocytes and monocyte-derived dendritic cells in response to microbial pathogen-associated molecular patterns.
    Raymond CR; Wilkie BN
    Vet Immunol Immunopathol; 2005 Sep; 107(3-4):235-47. PubMed ID: 15998543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of the avian-specific toll-like receptor 15 in chicken heterophils is mediated by gram-negative and gram-positive bacteria, but not TLR agonists.
    Nerren JR; He H; Genovese K; Kogut MH
    Vet Immunol Immunopathol; 2010 Jul; 136(1-2):151-6. PubMed ID: 20303182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-stimulation with TLR3 and TLR21 ligands synergistically up-regulates Th1-cytokine IFN-γ and regulatory cytokine IL-10 expression in chicken monocytes.
    He H; Genovese KJ; Swaggerty CL; MacKinnon KM; Kogut MH
    Dev Comp Immunol; 2012 Apr; 36(4):756-60. PubMed ID: 22120532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered monocyte responses to defined TLR ligands in patients with primary biliary cirrhosis.
    Mao TK; Lian ZX; Selmi C; Ichiki Y; Ashwood P; Ansari AA; Coppel RL; Shimoda S; Ishibashi H; Gershwin ME
    Hepatology; 2005 Oct; 42(4):802-8. PubMed ID: 16175622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toll-like receptor (TLR) 2 induced through TLR4 signaling initiated by Helicobacter pylori cooperatively amplifies iNOS induction in gastric epithelial cells.
    Uno K; Kato K; Atsumi T; Suzuki T; Yoshitake J; Morita H; Ohara S; Kotake Y; Shimosegawa T; Yoshimura T
    Am J Physiol Gastrointest Liver Physiol; 2007 Nov; 293(5):G1004-12. PubMed ID: 17855767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of nitric oxide production to CpG oligodeoxynucleotides in turkey and chicken peripheral blood monocytes.
    He H; Genovese KJ; Lowry VK; Nisbet DJ; Kogut MH
    FEMS Immunol Med Microbiol; 2006 Oct; 48(1):99-106. PubMed ID: 16965357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for dissociation of TLR mRNA expression and TLR agonist-mediated functions in bovine macrophages.
    Franchini M; Schweizer M; Mätzener P; Magkouras I; Sauter KS; Mirkovitch J; Peterhans E; Jungi TW
    Vet Immunol Immunopathol; 2006 Mar; 110(1-2):37-49. PubMed ID: 16216336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Type 1 cytokine/chemokine production by mouse NK cells following activation of their TLR/MyD88-mediated pathways.
    Sawaki J; Tsutsui H; Hayashi N; Yasuda K; Akira S; Tanizawa T; Nakanishi K
    Int Immunol; 2007 Mar; 19(3):311-20. PubMed ID: 17289654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly purified lipoteichoic acid induced pro-inflammatory signalling in primary culture of rat microglia through Toll-like receptor 2: selective potentiation of nitric oxide production by muramyl dipeptide.
    Kinsner A; Boveri M; Hareng L; Brown GC; Coecke S; Hartung T; Bal-Price A
    J Neurochem; 2006 Oct; 99(2):596-607. PubMed ID: 16879708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.